
The Software Magazine
$3.00 November 1982 Volume III, No. 6 (ISSN 0279-2575, usps 597-830)

Apples From Oranges: Database Management

Reviews of DataFlex and Access Manager

CP/M’s BDOS, Five New CPMUG Volumes

Improving on STAT, Tutorials, and More

TIM III
The NomProgramming Approach to Data Base Management

Data Base Management
Data management packages were created to

save time and money in the development of software
solutions to information problems. Many have been
designed to accomplish just that, although most have
only the programmer in mind. Sure they would save
time in the long run, but what of the initial investment
in time and effort required to learn the new language?
What about the non-programmers in the world who
would like an easy yet powerful applications generator?
The solution is one of the most highly acclaimed soft?
ware packages of our time, T.I.M. III.

What is T.I.M.?
T.I.M. is Total Information Manage-

ment. Programmers love it due to its original solutions
to classic data management problems. Non-
programmers adore it since they can use it to achieve the
same results as with other more complicated
programming-like packages.

What Makes T.I.M. So Simple
to Use?

We at Innovative Software, Inc. designed
T.I.M. from day one with the end user in mind. Maybe
he is a programmer who doesn’t have time to learn a
new language. Or perhaps a neophyte who fears coding
pads and lines numbered by tens. We felt that a data
management package should be able to be used by
anyone from a systems analyst to a secretary. That’s why
T.I.M. takes a full menu-driven approach, uses multiple
HELP screens, and has a manual that sets a new stan-
dard in documentation.

never seen a computer before in your life, you’ll be
able to read and understand our manual immediately.
The second section is a primer which goes through
several examples for you, again in plain English.
These true-to-life examples take the beginner by the
hand, and instructs him what to do and when. You
will be able to see for yourself that Tl.M.’s only limita-
tion is the imagination of the user.

Features of T.I.M.
T.I.M. has all of the features one has come to

expect from a data management package, as well as
many new ones. For example, a word processing interface
that allows you to merge information from a T.I.M. file
with letters or other documents created by a word pro-
cessor. Now you can automatically send personalized let-
ters to hundreds or thousands—quickly and easily.
Tl.M.’s Select command enables you to pull specific infor-
mation from a file. For example. “All customers who live
in a certain ZIP code, whose last name begins with the
letter A to L, whose balance due is less than $50.00.” A
sophisticated report generator and even a list generator are
also included.

How powerful is T.I.M.? With a maximum
record size of 2400 characters and the ability to keep up
to forty fields sorted properly at all times, T.I.M. is
powerful enough to handle just about any application.
T.I.M. can handle over 32,000 records per file, and two
files can be linked together for reports if your application
requires a many-to-one relationship. T.I.M. also includes
all of the same editing commands as your word pro-
cessor, thus making data entry and editing a snap. You
can also pull selected records from one file to place them
into another. Files may be restructured to add or sub-
tract fields and/or change field lengths or types.T.I.M.
even has it’s own utility for backing up hard disks onto
floppies.

Where to Find T.I.M.
T.I.M. is available from Lifeboat

Associates. Or you may purchase from us direct
by calling 913/383-1089. Either way you will

have the finest data management
program available.

The Manual
Many people believe that the manual is

just as important as the software itself a view that we
at Innovative Software, Inc. tend to share. The
manual for T.I.M. is divided into two sections, the
Reference section and the Primer. The Reference
section describes all of Tl.M.’s commands
and subcommands. This is done in
English, not in technical terms or in •
our own language. Even if you have | | |

Innovative Software, Inc.
9300 W. 110th Street, Suite 380
Overland Park, Kansas 66210 USA
913/383-1089

Available for CP/M,* and
IBM PC DOS.**
CP/M version—*695. IBM PC version—*495.

TIM is a Trademark of Innovative Software, Inc.
*CP/M and MP/M are Trademarks of Digital Research
♦♦Trademarks of IBM

REMEMBER:

JFORGETS:NEVEI

MORE THAN JUST ANOTHER PRETTY FACE
Says who? Says ANSI.
Specifically, subcommittee X3B8 of the American

National Standards Institute (ANSI) says so. The fact
is all Elephant™ floppies meet or exceed the specs
required to meet or exceed all their standards.

But just who is "subcommittee X3B8" to issue such
pronouncements?

They’re a group of people representing a large,
well-balanced cross section of disciplines—from
academia, government agencies, and the computer
industry. People from places like IBM, Hewlett-Packard,
3M, Lawrence Livermore Labs, The U.S. Department
of Defense, Honeywell and The Association of Com-
puter Programmers and Analysts. In short, it’s a bunch
of high-caliber nitpickers whose mission, it seems, in
order to make better disks for consumers, is also to

make life miserable for everyone in the disk-making
business.

How? By gathering together periodically (often,
one suspects, under the full moon) to concoct more
and more rules to increase the quality of flexible
disks. Their most recent rule book runs over 20 single-
spaced pages—listing, and insisting upon— hundreds
upon hundreds of standards a disk must meet in
order to be blessed by ANSI. (And thereby be taken
seriously by people who take disks seriously.)

In fact, if you’d like a copy of this formidable docu-
ment, for free, just let us know and we’ll send you
one. Because once you know what it takes to make
an Elephant for ANSI . . .

We think you’ll want us to make some Elephants
for you.

ELEPHANT. HEAVY DUTY DISKS.
For a free poster-size portrait of our powerful pachyderm, please write us.

Distributed Exclusively by Leading Edge Products, Inc., 225 Turnpike Street, Canton, Massachusetts 02021
Call: toll-free 1-800-343-6833; or in Massachusetts call collect (617) 828-8150. Telex 951-624.

Yes, we’re the
biggest.
But that isn’t
what makes us
number one.

We provide a Software Desk Reference™which
contains up-to-date information about state-of-the-
art software books, periodicals and accessories.
We offer subscriptions to Lifelinesm The Software
Magazine.™A monthly publication covering new
products, tips for microcomputer users, product
comparisons and other features to guide the reader
before and after a purchase.
As the largest publisher of software, we also print
a guide setting standards for software authors.
It takes a lot to become big but it takes even more
to become— and remain — number one.
That’s our commitment.

It’s the totality of what we do to make microcompu-
ters more effective for you that makes us number one.
Yes. We have the largest number of packages —
simple and complex. Yes. We have the greatest
number of formats. Yes. We have the best technical
support in the business. Yes. All of our products are
immediately available.
But let’s take a step back. When the microcomputer
world opened up there was little definition and no
software. Then came Lifeboat— to meet the need
for easy-to-use, fully-tested, reliable software
backed by extensive and available service.
Lifeboat developed standards for the industry
which led to improved quality, reduced costs,
higher levels of technical competence, credibility
and reduced user risk.
Today Lifeboat offers personal, professional and
corporate end-users, as well as dealers, distribu-
tors, authors, OEMs and others, a unique, single-
source, full-service Software Support System™
Everyone looks to us as the source of the most
comprehensive, fully-tested line of software.
Word processing, financial planning, accounting,
graphics, data base management, languages and
more. We have it all— for nearly every microcom-
puter available, including the IBM PC.
Our customer service department provides facilities
for mail, telephone, TWX, telex and personal sales.
We have a network of offices in the U.S., England,
France, Japan, Switzerland and West Germany.

Lifeboat Associates, 1651 Third Avenue, New York, New York 10028.

on

Name

Bus. PhoneCompany

Street

State

World’s No. 1 source of micro software

Lifelines, The Software Magazine,™ Lifelines Pub. Co.
Software Support System, Software Desk Reference,™ Lifeboat Assoc.

NEW IB-Bit Software Available for the IBM PC, plus . . .
Financial Accounting
Packages
General Ledger

Numerical Problem-
Solving Tools
Math PC
Plan86
SigmaCalc
Statpak

Professional And
Office Aids
Dental Mngmnt Sys. (8000 & 9000)
Insurance Agency
Legal Time Acctng.
Medical Mngmnt Series

(8000 & 9000)

Disk Operating Systems:
MS-DOS (SB-86) - available for
OEM license.

Data Management
Systems:
T.I.M. Ill

Mailing List Systems
Postmaster

Languages:
Lattice C Compiler
PL/M

Word Processing
Systems And Aids
WordStar
MailMerge
MicroSpell
Spellguard

System Tools:
Emulator/86
EM80/86
PMATE-86
UT86
PANEL-86

Telecommunications:
ASCOM

8-Bit Software Available
System Tools:
BUG and uBUG
DESPOOL
DISILOG
DISTEL
EDIT
EDIT-80
FILETRAN
IBM/CPM
MAC
MACRO-80
MINCE
PANEL
PASM
PLINK
PLINK II
PMATE
RAID
Reclaim
SID
TRS-80 Model II Cust. Disk
Unlock
WordMaster
XASM: 05, 09, 18, 48, 51, 65, 68, 75,

F8, 400, Z8
ZAP80
ZDT
Z80 Development Package
ZSID

Telecommunications:
ASCOM
BSTAM
BSTMS
eZmail
MicroLink-80
RBTE-80

Numerical Problem-
Solving Tools:
Analyst
fpl
Microstat
muSIMP/muMATH
PLAN80
SigmaCalc
Statpak
T/MAKER II

Professional And
Office Aids:
Apartment Mngmnt (Cornwall)
Datebook
Dental Mngmnt (Univair)
Dental Mngmnt-Family (Univair)
GrafTalk
Insurance Agency Mngmnt
Legal Time Acctng (Univair)
Medical Mngmnt (Univair)
Medical Mngmnt-Family (Univair)
PAS 3 Medical
PAS 3 Dental
Professional Time Acctng (PTA)
Property Mngmnt Pkg. (Am. Soft.)
Property Management (PTree)
Sales Pro
Wiremaster

Lifeboat After Hours
Backgammon/Gomoku

Educational Tools
Torricelli Author
Torricelli Studio

Books and Periodicals
APL—An Interactive Approach
Accounts Payable and Accounts

Receivable-CBASIC
CBASIC User Guide
The Computer Glossary
The CP/M Handbook (with MP/M)

The C Programming Language
Crash Course in

Microcomputing
Devil’s DP Dictionary
Discover FORTH
DON’T (Or How To Care For

Your Computer)
8080/Z80 Assembly Language

Techniques For Improved
Programming

Executive Computing
Fifty BASIC Exercises
General Ledger-CBASIC
Introduction to Pascal
Lifelines/The Software Magazine
Pascal User Manual and Report
The Pascal Handbook
The Pascal Primer
Payroll with Cost Accounting

-CBASIC
Structured Microprocessor

Programming
A User Guide To The UNIX System
Using CP/M—A Self-Teaching

Guide

Hardware and
Accessories
DC Data Cartridges
Diskette Drive Head Cleaning Kits
Flippy Disk Kit
Floppy Saver
Smartmodem
Vari Clean Cleaning Kit

Disk Operating
Systems
BRIDOS
CP/M-80
MP/M
SB-80
APPLI-CARD
Softcard

Hard Disk Integration
Modules

CIS COBOL (Standard)
COBOL-80
FORTRAN-80
KBASIC
JRT Pascal
muLISP/muSTAR
Nevada COBOL
Pascal/M
Pascal/MT
Pascal/M +
Pascal/Z
PL/l-80
Precision BASIC
STIFF UPPER LISP
S-BASIC
Timin FORTH
Tiny-C
Tiny-C TWO
UCSD Pascal
Whitesmiths’ C Compiler
XYBASIC

Language and
Applications Tools:
BASIC Utility Disk
DataStar
FABS
FABS II
Forms 2 for CIS COBOL
MAG/sam3,4
MAG/sort
M/SORT for COBOL 80
Programmer’s Apprentice
PSORT
QSORT
STRING/80
STRING BIT
SuperSort
ULTRASORT II
VISAM

Word Processing
Systems and Aids:
Benchmark
DocuMate/Plus
Letteright
MagicPrint

Magic Wand
Math*
MicroSpell
SMARTKEY
Spellguard
TEX
Textwriter III
WordIndex
WordStar
WordStar French
WordStar Customization Notes

Data Management
Systems:
CONDOR
dBASE II
Formula
HDBS
Hoe
MAG/base1,2,3
MDBS
MicroSEED
T.I.M. Ill

General Purpose
Applications:
CBS
CBS Label Option Pak
Selector III-C2
Selector IV

Mailing List Systems:
Benchmark Mailing List
Mailing Address
MailMerge for WordStar
NAD
Postmaster

Financial Accounting
Packages:
BOSS Financial Accounting System
Financial Pkgs. (PTree)
Financial Pkgs. (SSG)
General Ledger Acctng (Univair)
GLector

Languages:
ALGOL-60
APL/V80
BASIC Compiler
BASIC-80
baZic II
BD Software C Compiler
CBASIC-2

Media & Formats for 8-AND 16-Bit Microcomputers
This list of available formats is subject
to change without notice. If you do not
see your computer listed or are uncer-
tain, call to confirm the format code
for any particular equipment.
A.B. Dick M8
ADDS Multivision RT
AES Super Plus IV Q4
ALSPA8".. A1
Altair 8800 B1
Altos A1
Apple CP/M-80 13 Sector RG
Apple CP/M-80 16 Sector RR
Archives 1 SG
AVLEaglel RB
AVL Eagle II ST
BASF System 7100 RD
Blackhawk Micropolis Mod II Q2
BMC iF-800 SR
Cado A1
California Computer Sys 8" A1
CDS Versatile 3B Q1
CDS Versatile 4 Q2
Columbia Data Products 8" A1
Columbia Data Products 51/4" S4
Commodore CBM/PET + SSE

Box + 8050 C2
Commodore CBM/PET

w/Madison Z-RAM + 8050 C4
CQMPAL-80 Q2
Compucorp 655 Q7
Compucorp 685 Q6
Computer Ops N.C. HQ S2
Control Data 110 A1
CPT8000 A1
Cromemco System 3 A1
Cromemco System 2 SD/SS R6
Cromemco System 2 DD/SS RX
Cromenco System 2 DD/DS RY

CSSN Backup
Datapoint 1550/2150 DD/SS ...
Datapoint 1550/2150 DD/DS ...
Datavue DU 80-222
DECVT18X
Delta Systems
Digi-Log Microterm II
Digi-Log Sys. 1000/1500/2000
Direct OA1000
DTC Micro 210A
Durango F-85
Dynabyte DB8/2
Dynabyte DB8/4
Exidy Sorcerer +

LB CP/M-80 51/4"
Exidy Sorcerer +

Exidy CP/M-80 51/4"
Exidy Sorcerer +

Exidy CP/M-80 8"
EXO
Exxon 510/520
Findex
Godbout
Heath H8 + H47
Heath H89 + Magnolia CP/M-80
Heath H89 + Heath CP/M-80
Helios 11
Heurikon MLZ, SS
Heurikon MLZ, DS
Heuristics HCC Spectrum
Hewlett-Packard-87
Hewlett-Packard 125, 51/4"
Hewlett-Packard 125, 8"
IBEX 7100
IBM Personal Computer
ICL Personal Computer
iCOM 2411 Micro Floppy
iCOM 3712
iCOM 3812

iCOM 4511 Cartr. CP/M v.1.4 D1
iCOM 4511 Cartr. CP/M v.2.x D2
IMSAI VDP-40/VDP-42 R4
IMSAI VDP-44 R5
IMSAI VDP-80 A1
Industrial Microsystems 5000 RA
Industrial Microsystems 8000 A1
Intel iPDS M6
Intel MDSSD A1
Intersil Development Sys A1
Inter Systems Ithaca 800 A1
Intertec Superbrain DOS 0.5-2.XRJ
Intertec Superbrain DOS 3.x RK
Intertec Superbrain QD RS
ISC Intecolor 8063/8360/8963 A1
Lanier EZ-1 M3
Lanier Super 04
Lexitron VT 1303 DS/DD S8
Lexor Alphasprint Model S1 S1
Lexor Lexoriter S1
Meca Delta-1 51/4" P6
MICOM 2001 B3
MICOM 2001E B4
MICOM 3003 M1
Micromation A1
MicroMega 85 SC
Micropolis Mod 1 Q1
Micropolis Mod II Q2
MITS 3200-3202 B1
Monroe OC 8820, DD/SS SW
Morrow Discus A1
Mostek A1
MSD5 1/4"RC
MULTI-TECH-I Q2
MULTI-TECH-II 02
Nascom (Gemini drives) R3
Nascom II with Lucas Drives SL
National MSC 6600 A1
NCR 8140/9010 A1

NEC PC-8001 RV
Nicolet Logic Analyzer Model 764 ..SX
NNC-80/80W A1
North StarSD P1
North Star DD P2
North Star QD P3
Northern Telecom 503 SM
Nylac Micropolis Mod II Q2
Ohio Scientific C3 A3
OKI iF-800 + MSA CP/M-80 SP
OKI iF-800 + OKI/LB CP/M-80 SR
Osborne-1 SA
Otrona Attache MC
Pertec PCC 2000 A1
PET/CBM + SSE Bx + 8050 C2
PET/CBM w/Madison Z-RAM +

8050 C4
Philips P-2000 MA
Philips MICOM 2001 8" B3
Philips MICOM 2001E B4
Philips MICOM 3003 M1
Processor Technology Helios II B2
Quasar QDP100 A1
Quay 500 RQ
Quay 520 RP
Quay 900 A1
RAIRDD RE
RAIRSD R9
Research Machines 5.1/4 W RH
Research Machines 8" A1
Sanco70005" RQ
Sanyo MBC 1000 SY
Sanyo MBC 2000 SS
Sanyo MBC 3000 A1
Seattle E1
Sony U1
SD Systems 51/4" R3
SD Systems 8" A1
Spacebyte A1

Tarbell 8" A1
TecMar E1
TEI5V4" R3
TEI8" A1
Televideo DD/DS S5
T.I.P. (Alloy Engineering, Inc.) T3
Toshiba T200 SF
Toshiba T250 A1
Thumph Adler Alphatronic SV
TRS Model I + Omikron 51A" RM
TRS Model 1 + FEC Freedom RN
TRS-80 Model 1 + Shuffleboard ...A1
TRS-80 Model II A1
Vector MZ Q2
Vector System 2800 A1
Vector System B/VIP Q2
Vista V-80 5V4"SD R8
VistaV2005DD P6
Wangwriter SE
WORDPLEX SZ
XEROX 820, 5%" S6
XEROX 820, 860 8" A1
ZEDA580 SH
Zenith Z89 + Magnolia CP/M-80...P7
Zenith Z89 + Zenith CP/M-80 P7
Zenith DD/SS SK
Zenith DD/DS SJ
ZilogMC 22-20/25/50 A1

,Q2

,RW

„A1
,.A1
,Q5
,.P6
,.E1
,.A1
,.P7
,.P7
,.B2
.SN
.SO
,.A1
..SB
SB
,A1
.RQ
,G1
.RE
,R3
,.A1
,A1

Program names and computer names
are generally trademarks or service
marks of the author or manufacturing
company.
All Lifeboat (LB) 8-bit software re-
quires SB-80 (or other CP/M-80 com-
patible disk operating system) unless
otherwise stated.
All products are subject to terms and
conditions of sale.

Copyright ©1982 Lifeboat Associates

UFEUNco
The Software Magazine

November 1982 Volume III, No. 6

Editor-in-Chief: Edward H. Currie
Editor: Jane Mellin
Circulation/Customer Service: Patricia Matthews
Design/Production: K. Gartner
Typographer: Harold Black

Communications: Bonita E. Taylor
Contributing Editor: Bill Burton
Data Processing: Lewis Tseng

Lawrence Fishman
Anne Odden

Cover by K. Gartner

DEPARTMENTS

Opinion
6 Editorial Comments

Edward H. Currie
35

Digital Dollars Department
MicroMoneymaker’s Forum

Charles E. Sherman

7 Talking About You
Jane V. Mellin

The CP/M® Users Group
38 Volumes 86-90, Catalogues and

Abstracts

53

54

55

Product Status Reports
New Products

New Versions

Books

Software Notes
47 Macros Of The Month

Conducted by Michael Olfe

51 Improvements in Pascal/MT +™
Version 5.5

Reported by Al Bloch

52 An Overview of PANEL™
Jethro Wright III

56 Tips & Techniques

14

22

34

50

50

52

Miscellaneous
Notice

KIBITS™

Renew

iRMX Users Group
Anne Odden

How To Make A Floppy

Attention Dealers

|J|<

FEATURES

8 All About CP/M’s BDOS, Part 1
Michael J. Karas

The BDOS portion of CP/M-80 takes I/O requests for hardware independent applications
programs and turns them into a lower level set of simplistic hardware-oriented functions so
that they can be processed through the BIOS. This presentation will show the applications
programmer how to use most generalized BDOS system calls.

16 8080 Assembler Programming Tutorial, Subroutines, Part 5
Ward Christensen

This month Ward explores some subroutines for disk I/O: READ a byte at a time and WRITE
a byte at a time. In addition, information on using buffers other than the default disk I/O
buffer at 80H has been included in this segment of our popular series.

23 An Alternative to CP/M-80’s STAT
Thomas N. Hill

The program presented here (along with its companion, to appear next month) replaces the
functions of IOBYTE control and file attribute modification, allowing STAT’s retirement to the
“Hall of Fame.’’ SETIO provides a menu-driven, user-friendly method for examining and
modifying the IOBYTE.

30 An Introduction To Access Manager™
Bruce H. Hunter

Combining B-tree hierarchy and indexed sequential access method, Digital Research, Inc.
has brought the sophistication of the virtual sequential access method file system to the
microcomputer. Our reviewer finds AM-80 to be the finest data storage and retrieval system
available today - a must for developers of database systems.

41 A Review Of Dataflex™
Steve Patchen

This complex system employs Codasyl network type data structures and can be customized
to overcome unusual problems associated with some applications. Written in Pascal,
Dataflex is complicated for the designer to master but yields some important benefits.

It was inevitable.
In the beginning, there was the data base management system. Powerful, but only if you knew
programming. Then came the program generator—anyone could use it, but why bother to generate
poorly written BASIC programs? Now there's the best of both worlds with QUICKCODE™, the

data base program generator.

Power and ease of use.
Fox & Geller's QUICKCODE™ combines power and ease of use in one neat package. It writes consise
dBASE II™ programs to set up and maintain any kind of database. You can run them as is or
customize them in seconds. And you'll still have all the power of dBASE II™ at your disposal: query
language, report generator, and so on. But just as important: you don't need to do any programming. Just
draw your data entry form on the screen and you're in business. Typical time to set up a customer
list or order file: 5 minutes.

The Wordstar connection.
QUICKCODE™ also gives you the ability to transfer your dBASE II™ data into Wordstar®/Mailmerge™

files for word processing and form letters. So you can get the most from two software bestsellers:
dBASE II™ and Wordstar®.

(Software dealers: DOUBLE YOUP SALES!)

That's not all . . .
There are lots of other features, like form and report generation up to 132 characters wide, four-up
mailing labels, three kinds of data validation, four new data types not found in dBASE II™ itself, data base

keys, and menu generators. You really have to see it to believe it.

It's your move.
Now it's up to you to take advantage of this latest development in software. Why waste any more time
writing programs or paying someone to write them for you?

Fox & Geller's QUICKCODE™: $295.00.

OUICKCODE is now available for the IBM -PC with the Xedex Baby Blue Card.

QUICKCODE
Program Generator

Fox & Geller, Inc.
P.O. Box 1053
Teaneck, NJ 07666
201-837-0142

QUICKCODE is a trademark of Fox & Geller, Inc.
dBASE II is a trademark of Ashton-Tate.
WORDSTAB is a registered trademark of MicroPro Internationa!
San Bafae! California USA.
MAILMEBGE is a trademark of MicroPro Internationa!
San Bafael, California USA.
IBM is a registered trademark of International Business Machines.

Lifelines/The Software Magazine, November 19824

BASIC/ Z
the ultimate CP/M compiler!

Generates native code (8080/Z-80) for
fast execution - 16 bit versions soon
Sort verb is unmatched by stand-alones.
2000 elements in two seconds!
Alpha-numeric labels, variable and
function names of any length
Chain program segments which share
variables declared common
Five data types - binary/BCD/string
BCD floating point math - never a
“round-off” error - precision is program
definable from 6-18 digits
Full function program editor tests syntax
as you type
Recursive, multi-line, multi-argument
user defined functions

No royalties - No run-time charges
Dimension arrays dynamically (to an
expression) and selectively erase

• Screen oriented editing of console input
at run-time (cursor left/right/start/end,
delete left/right/line, insert/change
mode, and input masking available)
Push/pop subroutine stack
Trace and single-step debugging
Multi-tiered error trapping even handles
BDOS errors

• Cursor addressing, reverse and blinking
video, erase and more are supported
from source code level, with virtual
hardware independence
An extended library of over 200
“key-word” functions

For free brochure System/z, inc
and mini-manual: PO. Box 11

Richton Pork, IL 60471
(312) 481-8085System/z, inc

Copyright © 1982, by Lifelines Publishing Corporation. No
portion of this publication may be reproduced without the
written permission of the publisher. The single issue price is
$3.00 for copies sent to destinations in the U.S., Canada, or
Mexico. The single issue price for copies sent to all other
countries is $4.30. All checks should be made payable to
Lifelines Publishing Corporation. Foreign checks must be in
U.S. dollars, drawn on a U.S. bank; checks, money orders,
VISA, and MasterCard are acceptable. All orders must be
pre-paid. Please send all correspondence to the Publisher at
the below address.

a trademark of Digital Research

Version 2 For Z-80, CP/M (1.4 & 2.x) ,
& NorthStar DOS Users

The complete professional software system, that meets
ALL provisions of the FORTH—79 Standard (adopted Oct.
1980). Compare the many advanced features of FORTH-
79 with the FORTH you are now using, or plan to buy!
FEATURES OURS OTHERSLifelines (ISSN 0279-2575, USPS 597-830) is published

monthly at a subscription price of $24 for twelve issues,
when destined for the U.S., Canada, or Mexico, $50 when
destined for any other country. Second-class postage paid
at New York, New York. POSTMASTER, please send
changes of address to Lifelines Publishing Corporation,
1651 Third Ave., New York, N.Y. 10028.

79-Standard system gives source portability. YES
Professionally written tutorial & user manual. 200 PG.
Screen editor with user-def inable controls. YES
Macro-assembler with local labels. YES
Virtual memory. YES
BDOS, BIOS & console control functions (CP/M). YES
FORTH screen files use standard resident

file format. YES
Double-number Standard & String extensions. YES
Upper/lower case keyboard input. YES
APPLE I l/l l+ version also available. YES
Affordable! $99.95
Low cost enhancement options;
Floating-point mathematics YES
Tutorial reference manual
50 functions (AM951 1 compatible format)

Hi-Res turtle-graphics (NoStar Adv. only) YES
FORTH-79 V.2 (requires CP/M Ver. 2.x).
ENHANCEMENT PACKAGE FOR V.2:

Floating point
COMBINATION PACKAGE (Base & Floating point)

(advantage users add $49.95 for Hi-Res)
(CA. res, add 6% tax; COD & dealerinquirieswelcome)

Lifelines - TM Lifelines Publishing Corp.
The Software Magazine - TM Lifelines Publishing Corp.
SB-80, SB-86 - TMs Lifeboat Associates.
BASIC-80, MBASIC, MS, SoftCard, COBOL-80 - TMs Microsoft, Inc.
CB80, PL/l-80, SID-86, CP/M-86, Pascal MT + , MP/M, Access Manager - TMs, CP/M and
CBASIC2 registered TM - Digital Research, Inc.
Dataplex - TM Data Access Corp.
dBASEI I -TM Ashton-Tate.
KIBITS - TM Bess Gerber
MailMerge, WordStar - TMs MicroPro International Corp.
PANEL - TM Roundhill Computer Systems Ltd.
PMATE, PLINK-II - TMs Phoenix Software Associates, Ltd.
Z80 - TM Zilog Corporation.
Program names are generally TMs of their authors or owners.
The CP/M Users Group is not affiliated with Digital Research, Inc.

$99.95

$ 49.95
$139.95

MicroMotion
12077 Wilshire Blvd. # 506
L.A..CA 90025 (213) 821-4340
Specify APPLE, CP/M or Northstar
Dealer inquiries invited.

Lifelines/The Software Magazine, Volume III, Number 6 5

pinion _____________
Editorial Comments Edward H. Currie

This incisive treatment is a micro-tome
published by McGraw-Hill as one of
the Byte Books. (How's that for real
medical pun-ishment ... incisive ...
micro-tome ... oh well ...)

Hayes has introduced a new version of
the Smartmodem which operates at
either 300 or 1200 baud. This device,
used with ASCOM, DMA's excellent
software product, provides the ulti-
mate in state of the art communications
packages for micros.

By the way, there is an exciting new
development on the communications
front, relating to the transmission of
software via air waves. We'll be dis-
cussing this subject in the next few
months.

You'll soon be reading about a new
hardware development called The Grid
system. This book-sized portable mi-
crocomputer utilizes the 8088 and bub-
ble memory with a flat screen display.
Unfortunately, The Grid is not a stand
alone computer. Most important, how-
ever, is the fact that the concept of a
truly portable machine has taken a
quantum leap forward.

The flat screen display, while impres-
sive, is not fully equivalent to the stan-
dard CRT. Sinclair and Philips have
both been experimenting with flat
CRT's. Sony recently announced yet
another innovative product, the Sony
Watchman, which employs a similar
device.

It's obvious that "flat" CRT technology
will be implemented on a wide range of
portable machines, offering the famil-
iar twenty-four lines of eighty charac-
ters. Thus software designed for the
traditional screen format should find
its way rapidly into the realm of the
portable machine.

As you read this, Digital Research will
be releasing details of CP/M 3.0, to be
reviewed soon. This 8080/8085/Z80
system will work best in a banked
RAM environment. (A typical envi-

ronment would have 96K of RAM and
a maximum TPA of 62K.) CP/M 3.0 is
fully compatible with CP/M 2.2 and
offers time and date stamping, pass-
word protection, records lock, partial
close, hashed directory access, least
recently used (LRU) sector buffering,
multi-sector I/O primitives, enhanced
BDOS error trapping, a BDOS free
space function, a BDOS program chain
function, system control block, direct
BIOS calls through BDOS, program
and overlay loading, BIOS level I/O
device assignment and resident system
extensions. The IOBYTE is superseded
by the assignment of I/O devices at the
BIOS level. Blocking is performed in
the BDOS, simplifying BIOS complex-
ity. A help facility is also supported.
Multiple CCP commands on the same
line allow conditional command execu-
tion of a second command.

Networking is becoming an important
area for micro users, and you should
plan to add telecommunications capa-
bility to your micro in the near future.
Transmission at twelve hundred baud
is now within the reach of even the
most modest of pocketbooks and it is
joined by fine software such as ASCOM.
If you haven't taken the time to access
the CBBS's across the country, do so. If
your own system doesn't currently sup-
port communications, go to your local
computer dealer or to a friend and ac-
cess a local bulletin board. The bulletin
boards have begun to specialize in cer-
tain types and classes of software. You
will find that the BDS C systems, for
example, offer quite different features
and program types than the traditional
CP/M systems.

Undoubtedly there will soon be an FM
receiver that plugs into a serial port on
your microcomputer. This receiver will
have fixed tuning to some set of local
FM stations; they will broadcast pro-
grams which you can access on a sub-
carrier. Furthermore, by purchasing a
password for a particular program,
you may be able to acquire software
which is not in the public domain. Data
transmission mechanisms providing a

(continued on page 14)
Lifelines/The Software Magazine, November 1982

To Speak of Many Things ...

The response to prior editorials which
also included book reviews has been
excellent. Interestingly, there are now
several of our authors contributing
critical reports. In this month's editor-
ial are some additional reviews which
may prove of interest. In the future,
however, look for a book review sec-
tion in your monthly Software Maga-
zine, Lifelines.

In one important subject area, perhaps
the best book published to date is John
Zarrella's Language Translators - As-
semblers, Compilers and Interpreters.
This book by Microcomputer Applica-
tions appears in paperback form and is
one in a series called The Advanced
Technology Books.

This text is unusual because John Zar-
rella "gives it all away" in an extremely
lucid, well-designed fashion. The best
description is that given by the author,
in his prefactory remarks. 'This book
introduces language translator con-
cepts for anyone desiring an under-
standing of the functions required to
convert programs into machine-exe-
cutable form." Concepts such as: code
generation, macros, data typing, lex-
ical analysis, syntax, parsing, seman-
tics, optimization and symbol tables
are all discussed in detail.

If John's other texts, Operating Sys-
tems - Concepts and Principles and
System Architecture, are as creditable
they will have a permanent place on
my bookshelf.

The Brains of Men and Machines by
Ernest W. Kent is a major contribution
to the topic of the correlation between
the way people and machines think.
Kent is a professor of physiological
psychology and psychopharmacology
at the University of Illinois. However,
the author assumes no particular back-
ground for his readers in psychology,
pharmacology or physiology. The
casual reader will find this material
challenging but well worth the effort.

Opinion ___________
Talking About You Jane V. Mellin

tion, actually, is to present a product
description which includes those fea-
tures unique to the review's subject.

Coming Soon

We're preparing some exciting reviews
for you, and we're going to touch on a
few areas we really haven't explored
before. Charles Strom will investigate
Fancy Font, one of the new products on
the market which promises to make
your word processing more present-
able, even pretty.

On the IBM PC front, we have numer-
ous packages under scrutiny, including
LogiQuest III, which John Howes is
looking into. This relational data base
management system originally ran
under UCSD Pascal, and has been
modified to include its own miniature
operating system. Davis Foulger will
present an assessment of a true hierar-
chical data base manager for the IBM
PC, RMS.

Since we know you're eager to stay in-
formed on the full spectrum of data
base management software, we also
have a number of CP/M-80 compatible
packages up our reviewers' sleeves.
Bob Kowitt is studying a unique prod-
uct called SUPERFILE; it works back-
wards! If that mystifies you, look for
Bob's intriguing appraisal next month.
Paul Hoffman is probing Citation, ad-
vertised as a combination word pro-
cessor and data manager; this product
targets professional writers, and as
such will receive especially intense
scrutiny.

We'll soon be looking at microcom-
puter COBOLs. Among the more in-
teresting projects in progress is Joseph
Rothstein's evaluation of COGEN, an
RM/COBOL program generator.
We're also looking into a new COBOL
compiler, called mdp COBOL.

Next month, we'll also be picking up
our communications series with an ex-
amination of Crosstalk, f l

A Slice of Family Life

George H. Taylor of Santa Barbara,
CA is a consulting meteorologist who
uses an Osborne I in his home. (He also
utilizes a micro in the office.) He's been
writing educational software so that his
children can share his interest and en-
thusiasm. We can all commend George
for the way he has involved his family
in computing while developing some
possibly remunerative applications.

There is a danger, recognized by some
families I know, that the microcom-
puter can become another factor, like
the television, in separating family
members. I'm not making as radical a
statement as you might at first think,
and I'm not saying that microcomput-
ing leads to divorce or juvenile delin-
quency or demonic possession (though
some might disagree about the latter
condition). I just believe we should all
be conscious that microcomputing can
become a very isolating activity, and
make a special effort to include our
loved ones in home computing ac-
tivities. If you've developed some
special strategies along these lines, let
Lifelines/The Software Magazine know.

About Our Reviews

John L. Moore of Raleigh, NC begs to
differ with some of the opinions James
Gagne expressed in his review of Pas-
cal/Z (see Lifelines/The Software Mag-
azine). He developed a library of exten-
sive string handling functions and pro-
cedures to augment those native to the
compiler. "Many of these functions
were equivalent to those used in BASIC
and all variables used in the routines
were local to the individual function or
procedure." Thus, John has found Pas-
cal/Z suitable for developing software
tools. Although he agrees with our
author that Pascal/Z is not perfect, he's
found Ithaca Intersystems to be respon-
sive to his problems as a user.

Several readers have complimented our
reviews lately, calling them "objective",
"gutsy" or "hard-hitting." Our inten-

This past month has brought a wealth
of mail-born goodies: lots of feedback
from you, along with comments and
suggestions for future issues. If you
have something to contribute, don't
hold back. Possibly others are express-
ing the same sentiments, and your let-
ter could just convince us that an im-
portant need is developing. If you've
got a really novel and exciting idea for
helping Lifelines/ The Software Maga-
zine serve you, we'll implement it - and
give you credit within these pages.

Calls for Help

Carl R. Camper of Colstrip, MT has a
number of interesting suggestions; we
were pleased at his request for a tutorial
on C and reviews of some of the C's in
the marketplace. It so happens that just
such a series is in the works. Look for it
in the coming months. (The series will
cover both eight- and sixteen-bit soft-
ware, ranging from some of your old
favorites like Whitesmiths' C, to the ex-
citing new Lattice C Compiler.)

Carl is having difficulty deciding which
brand of disk drive can replace his old
ones. Although he didn't let us know
what type of drive he was searching for,
other readers may be able to help him
out. If you've had some good experi-
ences with a particular brand over an
extended period of time, let us know.
We'll forward your input to Carl. The
results will doubtless be less than
perfect as an assessment of what's
available, but any consistent or over-
whelming trends will be reported to
you.

Another request for information comes
to us from Dennis P. Bowen of Skane-
ateles, NY, who would like to convert
CPMUG NorthStar diskette formats to
CP/M-80 2.2 soft sector format for his
Wangwriter system. In addition, Den-
nis would love to find a program to al-
low CP/M-80 to read his Wangwriter-
created text files; that way, Dennis
could take advantage of the Wang full
screen text editor for program entry.

Lifelines/The Software Magazine, Volume III, Number 6 7

Feature

All About CP/M’s BDOS, Part 1
Michael J. Karas

typical brand XYZ computer. This conversion requires about
one half of the effort needed to convert even the simplest sin-
gle application package written in a hardware-dependent
manner. Conclusion; software developers can make better,
more sophisticated applications available at lower cost.
Computer users shop in a competitive software marketplace,
where there are many packages available that perform simi-
lar functions.

This presentation is intended to show the prospective appli-
cations programmer how to use most of the generalized set of
"BDOS System Calls" within Digital Research's CP/M-80
version 2.2. The scheme is to describe all of the functions and
use simple examples. The reader is assumed to be modestly
familiar with 8080 Assembly Language Programming, as all
of the examples will be given in machine language. Likewise,
in this environment it is assumed by default that the prospec-
tive programmer is planning to code in assembly language. If
a CP/M-80 compatible high level language is used for pro-
gramming (such as Digital Research's PL/I-80 or Microsoft's
BASIC-80), then of course the program interface at the "Sys-
tem Call" level becomes transparent to the programmer. Run
time subroutines mean that the high level coded application is
converted through yet another step (one major reason appli-
cations code in a high level language runs more slowly than
the equivalent function written in assembly language).

Summary Of CP/M-80 System Calls

The set of system or "BDOS" I/O entry points available to
the CP/M-80 programmer is complete yet simple. The pri-
mary beauty of the CP/M-80 system is this small world of
completeness. Many programmers familiar with other oper-
ating systems complain that the CP/M-80 system is weak, in-
flexible, and incomplete. However, in a microprocessor
world, the generalization level defined for the CP/M-80 sys-
tem allows 85% of all microprocessor application jobs to be
programmed with relative ease. Also, in my opinion, 8-bit
microprocessor hardware is easily capable of performing
about 90 percent of the typical tasks targeted for microcom-
puters. So what is this set of functions? The chart of Figure 1
summarizes, in function number order, all of the system oper-
ations specific to CP/M-80 Version 2.2 which will be covered
in this presentation. In subsequent sections the functions will
be grouped into categories, so that related operations
reference one another.

Each function contains a certain common structure for "us-
ing" or interfacing to the CP/M-80 system. The base memory
page of a CP/M-80 system memory map includes, at a speci-
fic memory address, a JUMP instruction to the CP/M-80
BDOS entry point. For most CP/M-80 systems this is address
00005H. To accomplish BDOS I/O, the number of the func-

What is this "BDOS" everybody is talking about?

This series will attempt to answer that question in some de-
tail, but first we need to understand why BDOS is important.
Digital Research's CP/M-80 is an operating system for
smaller microprocessor computers, designed to remove
much of the normal computer operation drudgery experi-
enced by the user. The operating system software embodies a
"system philosophy" that structures and generalizes upon the
working environment of electronics hardware. The environ-
ment presented actually allows that piece of quiet, transistor-
ized machinery to be used at a much higher level.

The full impact of this operating system is probably felt most
strongly by the typical microcomputer hacker who worked
the hard way to get a computer system up and running. While
the hacker was building, debugging, and integrating the
pieces, the computer was just a bunch of parts interfaced
together in an organized manner. However, when this com-
posite is finally a "computer" how does it get used? The low
level process of poking data into memory from a front panel
or even filling, dumping, or block moving memory data with
an EPROM-based "monitor program" hardly makes this
computer "useful". The process of putting on disks and bring-
ing up CP/M-80 lights the torch for computer usability. In
this case the hacker experiences an elated feeling, 'NOW I
CAN DO SOMETHING!"

Buried in the total operating system presentation is the con-
cept of generalization mentioned earlier. For a computer to be
useful, there must be applications software to perform the
jobs intended for the computer: tasks like accounting, word
processing, spread sheet data analysis, or inventory control.
Unfortunately, production of applications software is very,
very expensive. A good package may take anywhere from
one to ten years of one person's development effort to create.
If the process of making an applications package had to be
custom-tailored to a specific hardware environment, then
there would not be affordable software for all the computers
available. Generalization in the operation of a computer en-
vironment solves this problem, however. With the under-
standing that at a certain level "all microprocessor computer
systems are alike" it is possible, with minimum constraints, to
define a set of logical operations that make a computer useful.

For the Digital Research CP/M-80 operating system, this log-
ical set of operations is defined within the BDOS portion of
the operating system. Here, in about SVzK bytes of tightly
written assembly language, is the "generalization converter"
that takes I/O requests for hardware independent applica-
tions programs and turns them into a lower level set of sim-
plistic hardware-oriented functions which are then processed
through the BIOS. This conversion process is beneficial; it
means that CP/M-80 version 2.2 can be set up to run on a

Lifelines/The Software Magazine, November 19828

flag within BDOS is checked (CTL-P) and if it is set, the char-
acter is also sent to the printer peripheral device. Note that
the BDOS automatically expands output tabs to columns of
eight characters. When the character is output, a check is
made for input of console start/stop, CTL-S; if this input has
occurred the console output routine does not return to the
user's program until another arbitrary key is depressed.

tion is placed into the (C) register. If the parameter requires
input parameters, they are passed in the (DE) register pair or
the individual (E) register, depending upon whether the para-
meter is a word or byte value. Result information returned by
some functions is sent back to the user's program in either the
(A) register or the (HL) register pair, depending upon whether
the value is a byte or word. The following simple program
segment demonstrates the scheme used to output the 26 char-
acters A-Z to the console screen through the use of function {CONSOLE OUTPUT EXAMPLE

CONOUT EQU 002H ;FUNC # 2
BDOS EQU 0005H ; SYSTEM ENTRY

ORG 0100H ; START
LDA OUTCHAR {GET CHARACTER TO
MOV E,A ; OUTPUT
MVI C, CONOUT ; FUNCTION
CALL BDOS ;G0 SEND CHARACTER
RET ; IMMEDIATE CCP

; RETURN
OUTCHAR:

DB zx z {PLACE TO GET
; OUTPUT CHAR

END

number 2.
BDOS EQU U005H {SYSTEM ENTRY
CONOUT EQU 2- {OUTPUT FUNCTION

ORG 010UH ;TPA BASE
MV1 B,26 ; PRINT 26 COUNTER
MVI C,'A Z {START WITH 'A z

LOOP:
PUSH B {SAVE COUNTER & LETTER
MOV E,C {LETTER TO (E) FOR OUTPUT
MVI C, CONOUT {BDOS FUNC TO (C)
CALL BDOS ;G0 OUTPUT
POP B
INR C {SEQUENCE TO NEXT CHAR
DCR B {DECREASE CHR COUNTER
JNZ LOOP {MORE TO DO IF NOT TO ZERO
RET ; IMMEDIATE CCP RETURN

DIRECT USER INTERFACE TO CONSOLE:
Function 6.
Some programming applications require that the BDOS not
monitor the input /output character stream as we saw in func-
tions 1 and 2. In these cases the direct I/O function is sup-
ported. The following example shows how it is used to input
values and echo them until an input control-Z character is
typed.

System Calls For Operator Console
Input And Output

Intrinsic to the operation of any computer system, (especially
CP/M-80 and its relations) is the operator console. The de-
vice provides the human interface to the machine and as such
the BDOS includes a generalized set of operator communica-
tion functions to perform I/O with the console device. The
various options available will each be presented with a brief
example.

INPUT FROM CONSOLE KEYBOARD:
Function 1.
This function waits for and reads in a character from the con-
sole device keyboard. The operator-typed character is
echoed automatically back to the console display if the char-
acter is an ASCII printable character (020H to 07EH) or if it is
a carriage return, line feed, back space, or tab. Note that the
BDOS automatically expands tabs to columns of eight char-
acters. Upon outputting the character for the echo, a check is
made for console start/stop, CTL-S, and if so, the console in-
put routine does not return to the user's program until
another arbitrary key is depressed.

; DIRECT CONSOLE 1/0 EXAMPLE

D1RCI0 EQU 006H
BDOS EQU 0005H
CTLZ EQU z Z z -040H
INPUT EQU OFFH

ORG 0100H

LOOP:
MVI E, INPUT
MVI C,DIRCI0
CALL BDOS
ORA A
JZ LOOP
CPI CTLZ
RZ
MOV E,A
MVI C, DIR CIO
CALL BDOS
JMP LOOP

{FUNCTION NUMBER
{SYSTEM ENTRY POINT
{ASCII CTL-Z CHARACTER
; DIRECT INPUT FLAG

; CONSOLE INPUT

{SET FOR INPUT
; FUNCTION
{GET INPUT OR STATUS
; IF (A)=0 NO CHAR WAS READY
; CONTINUE TO WAIT FOR INPUT
; IF INPUT WAS CTL Z THEN END
;CCP RETURN ON END
; CHARACTER TO (E) FOR OUTPUT
{SAME FUNCTION NUMBER AGAIN
;G0 OUTPUT IT
{NEXT CHARACTER INPUT LOOP

END

PRINTING STRINGS OF CHARACTERS TO
THE CONSOLE: Function 9.
Message string character sequences to be sent to the console
are quite common in applications programming. Typically
they are utilized for user prompt messages, program sign-on
messages etc. The BDOS provides a convenient mechanism
to allow the programmer to output a whole string of charac-
ters rather than having to loop with single character outputs.
The string is intended to be stored in consecutive memory lo-
cations and end with the ASCII character. The (DE) regis-
ters are used to point to the start of the string. The '$' signals
the end of the string to display and is not sent to the console.
The output bytes may be any 8-bit value, but many times the
hardware driver BIOS routines automatically strip off the up-
per bit of the byte. Upon output of each character the printer
echo flag within BDOS is checked (CTL-P) and if set the char-
acter is also sent to the printer peripheral device. Note that

(continued next page)

{CONSOLE INPUT EXAMPLE

CONIN EQU 00 1H jFUNC # 1
BDOS EQU 0005H ; SYSTEM ENTRY

ORG 01 OOH ; START
MVI C, CONIN ; FUNCTION
CALL BDOS ;G0 GET CHARACTER
STA INCHAR {SAVE FOR WHATEVER REASON
RET ; IMMEDIATE CCP RETURN

INCHAR:
DS 1 {PLACE TO STORE INPUT

; CHAR
END

OUTPUT TO CONSOLE DISPLAY: Function 2.
The ASCII character in the (E) register is sent to the console
display device. The output may be any byte value, but many
times the hardware driver BIOS routines automatically strip
off the upper bit of the byte. Upon output the printer echo

Lifelines/The Software Magazine, Volume III, Number 6 9

the BDOS automatically expands output tabs to columns of
eight characters. Upon outputting each character a check is
made for input of console start/stop (CTL-S) and if the check
is positive, the console string output routine does not return
to the user's program until another arbitrary key is depressed.

CALL
RET

BDOS ;G0 GET STRING
; RETURN TO CCP WITHOUT
; . . .DOING ANYTHING WITH DATA

•CONSOLE INPUT BUFFER LAYOUT

STRING:
DB LENGTH ; MAXIMUM DESIRED INPUT LENGTH

AMOUNT:
DS 1 ;BYTE WHERE BDOS RETURNS

; . . ACTUAL BYTE COUNT
STRBF:

DS LENGTH ; RESERVED STORAGE FOR UP TO
; ’’LENGTH" NUMBER OF CHARACTERS

END

; CONSOLE STRING PRINT EXAMPLE

CONSTR EQU 009H ;FUNC # 9
BDOS EQU 0005H ; SYSTEM ENTRY
CR EQU ODH ; ASCII CARRIAGE RETURN
LF EQU UAH ; ASCII LINE FEED

ORG 0100H ; START
LXI D, MESSAGE ; POINT AT STRING TO SEND
MV1 C, CONSTR ; FUNCTION
CALL BDOS ;G0 SEND STRING
RET ; IMMEDIATE CCP RETURN

MESSAGE:
DB CR,LF , 'Hel lo Operator CR , LF ,

END

DETERMINING WHETHER THERE IS PENDING
KEYBOARD INPUT: Function 11.

Some computer programs are designed to spend a lot of time
processing inside of the computer or manipulating data
within disk files, without stopping to ask the user if he or she
desires to stop the processing sequence. Also it is often desir-
able to have a "terminate" capability for application pro-
grams, without waiting for the operator to answer a charac-
ter input request. If the normal console input function is used,
the user computer is not resumed until a character is already
input. The console input status check function may be em-
ployed to poll the user keyboard to determine whether a
character input is pending. If no input is ready, the user pro-
gram is immediately resumed with an indication of whether
there was a pending input. If a character is pending, a OFFH is
returned in the (A) register. Otherwise a 000H value is re-
turned. The following example illustrates the use of console
status to terminate a normally endless loop that prints the
same string over and over.

READING A STRING OF CHARACTERS IN
FROM KEYBOARD: Function 10.

The CP/M-80 console command processor (CCP), familiar
to most CP/M-80 system operators, allows buffered com-
mand input with editing features. It turns out that this opera-
tion is a much-needed function for receiving strings of text
from the operator console. Use of this function allows stan-
dardization of the command input functions, so the operator
can easily learn the editing key functions. It also removes the
pain of the applications programmer writing the same func-
tion over and over again. The read string command inputs
the edited text to a buffer pointed to by the (DE) register pair.
The caller specifies the maximum length desired and the
BDOS returns the actual length of string entered - if carriage
return is entered prior to exceeding the maximum input
length. The input length is returned in both the (A) register
and as part of the buffer. Bytes in the string buffer beyond the
end of the entered text are uninitialized. The example shown
below shows the buffer structure and how to program an in-
put function.

The editing functions supported are the following control
and/or special characters:

; CONSOLE STATUS USAGE EXAMPLE

CONSTAT EQU 00BH ;FUNC # 11
CONSTR EQU 009H ; PRINT STRING FUNCTION
BDOS EQU 0005H ; SYSTEM ENTRY
CR EQU ODH ; ASCII CARRIAGE RETURN
LF EQU UAH ; ASCII LINE FEED

ORG 01 OOH ;START
LOOP:

LXI D, MESSAGE ; POINT AT STRING TO SEND
MVI C, CONSTR ; FUNCTION
CALL BDOS ;G0 SEND STRING
MVI C, CONSTAT ;GET ABORT STATUS
CALL BDOS
ORA A ; CHECK STATUS
JZ LOOP ;N0 KEY SO CONTINUE LOOP
RET ; IMMEDIATE CCP RETURN IF ABORT

MESSAGE :
DB CR , LF , 'Depress any Key to STOP ' , ' 4> '

END

rub /del removes and echoes the last entered char
ctl-C initiates system reboot if first char
ctl-E echoes a CR & LF to console without put

ting them into buffer
ctl-H (or back space key) back spaces one char

removing last entered character
ctl-J (or line feed key) terminates line input
ctl-M (or carriage return) terminates input
ctl-R retypes currently entered characters under

current line
ctl-U deletes all of currently entered data and re-

starts buffer input on new line
ctl-X deletes all of currently entered data and

restarts buffer input on same line

AUXILIARY PERIPHERAL CHARACTER INPUT
AND OUTPUT FUNCTIONS

The generalized CP/M-80 BDOS allows three character-by-
character logical I/O devices to be attached to the computer
system. This requirement stems from the fact that most com-
puters are designed to interface to the real world through
more means than just a console device. The three devices are
classified as:

a) A list type device that is generally expected to be a printer
of some sort. This classification is an output only device.

b) An input device supporting character input from a
source other than the console. The device is specifically

; CONSOLE INPUT BUFFER EXAMPLE

CONBUF EQU 00AH ; STRING INPUT FUNCTION
BDOS EQU 0005H ;SYSTEM ENTRY POINT
LENGTH EQU 32 ;DES1RED MAXIMUM CHARACTERS

ORG 0100H ;START POINT
LXI D, STRING ; POINT AT BUFFER AREA
MVI C, CONBUF ; FUNCTION NUMBER

Lifelines/The Software Magazine, November 198210

an input type unit. CP/M-80 jargon refers to this device
as the "READER" for no particular reason.

c) A generalized character output only device used as a
specific data destination other than the console or stan-
dard list device. Some computer systems use this device,
often times referred to as the "PUNCH' device as a sec-
ond printer output.

The three following examples illustrate the programming
techniques used to talk to each of these three devices.

RESET
BDOS

EQU
EQU

000H
000 5H

; SYSTEM RESET FUNC
;SYSTEM ENTRY POINT

ORG 01 OOH
MVI C, RESET
JMP BDOS ;CALL ALSO PERMISSIBLE

; EXCEPT THAT FUNCTION
;DOES NOT RETURN TO USER
; PROGRAM

GET AND SET IOBYTE: Functions 7 & 8.

The generalized CP/M-80 operating system environment
communicates, via I/O, to "logical" type devices. This means
that the console, list, "reader", and "punch" are just treated as
generic device classifications. The CP/M-80 system allows
for and supports, to a degree, the hardware containing multi-
ple physical devices (peripherals and/or real I/O devices)
within each of the generic logical device classifications. The
assignment of multiple physical devices to a given classifica-
tion is implemented through the IOBYTE, normally stored at
address 00003H of the base page of the CP/M-80 memory.
The BIOS hardware I/O software may therefore be written
so that it will know which one of two printers it must address
when the BDOS requires output to one of two printers. A
"default standard" IOBYTE format has been adopted, based
upon an 8-bit microprocessor system convention developed
by Intel Corp; here it is:

;LIST DEVICE OUTPUT EXAMPLE

LIST EQU 005H ;FUNC # 5
BDOS EQU 0005H ;SYSTEM ENTRY

ORG 01 OOH ; START
LDA LSTCHAR ;GET CHARACTER TO
MOV E,A ; OUTPUT
MVI C,LIST ; FUNCTION
CALL BDOS ;G0 SEND CHARACTER
RET ; IMMEDIATE CCP

; RETURN
LSTCHAR:

DB 1 ' ;PLACE TO GET
; OUTPUT CHAR

END

; READER DEVICE INPUT EXAMPLE

READER EQU 003H ;FUNC # 3
BDOS EQU 0005H ;SYSTEM ENTRY

ORG 0100H ; START
MVI C, READER ; FUNCTION
CALL BDOS ;G0 GET CHARACTER
STA RDRCHR ;SAVE FOR WHATEVER REASON
RET ; IMMEDIATE CCP RETURN

RDRCHR:
DS 1 ;PLACE TO STORE INPUT CHAR

END

Logical Devices = >
IOBYTE bits = >

(lister) (punch) (reader) (console)
• LST:
• 7 6

PUN:
5 4

RDR:
3 2

CON:
1 0

Bit pattern
dec binary
0 00 TTY: TTY: TTY: TTY:
1 01 CRT: PTP: PTR: CRT:
2 10 LPT: UP1: UR1: BAT:
3 11 ULI: UP2: UR2: UC1:

; PUNCH DEVICE OUTPUT EXAMPLE

PUNCH EQU 004H ;FUNC # 4
BDOS EQU

ORG

0005H

0100H

;SYSTEM ENTRY

; START
LDA
MOV
MVI
CALL
RET

PNCHCHR:
DB

END

PNCHCHR
E,A
C, PUNCH
BDOS

ZP Z

;GET CHARACTER TO
; OUTPUT
; FUNCTION
;G0 SEND CHARACTER
; IMMEDIATE CCP
; RETURN

;PLACE TO GET
; OUTPUT CHAR

The designators in the table specify the standard types of
physical devices and are defined as follows:

TTY: A teletype console with keyboard, hard copy
display and possibly an integral tape reader/
punch

CRT: An interactive cathode ray type terminal with
keyboard input and display screen

BAT: A batch processor work station with a card
reader type input device and a hard copy dis-
play/output device

UC1: A user-defined alternate "console" unit
LPT: Line printer
ULI : A user-defined list device
PTR: Paper Tape Reader
UR1: User-defined "reader" character input device
UR2: User-defined "reader" character input device
PTP: Paper Tape Punch
UP1: User-defined "punch" character output device
UP2: User-defined "punch" character output device

System Control BDOS Functions

This family of BDOS-supported system calls is designed to
allow the programmer a degree of flexibility in manipulating
the operation of general CP/M-80 environment. In general,
each function here will be discussed individually because of
the unique nature of each operation.

SYSTEM RESET: Function 0.

The system reset function is designed to allow restart of the
CP/M-80 system command processor after a user application
completes execution or is aborted. The system reset function
is equivalent to a JMP to address 0000H or a CTL-C which
forces a system WARM Reboot. The reboot operation de-ac-
tivates all active drives except drive A: which is re-logged.
Operation is extremely simple as:

Lifelines/The Software Magazine, Volume III, Number 6

The BDOS support for the I/O device assignment is a stan-
dard mechanism to access the lOBYTE's current value and
switch it to some other value. Suppose a CP/M-80 computer
had two printers connected as LST: and ULI: . If the applica-
tions program needs to switch printing output to another
printer, the process could be handled as follows:

(continued next page)
11

; RESET DISK SYSTEM EXAMPLE{GET AND SET IOBYTE EXAMPLE

RESET
BDOS

EQU
EQU

0DH
0005H

{FUNCTION 13
{SYSTEM ENTRY POINT

ORG 01 OOH {PROGRAM START
MVI C, RESET {SET UP FUNCTION
CALL BDOS ;G0 RESET THE DRIVES
RET {BACK TO THE CCP

>
END

SETIOB EQU 0U8H {SET IOBYTE FUNCTION
GETIOB EQU 007H {GET IOBYTE FUNCTION
BDOS EQU 00005H {SYSTEM ENTRY POINT
LSIMASK EQU 11$00$00$00B ; IOBYTE MASK FOR LIST

; DEVICE
LPT EQU 10$00$00$00B ;B1T VALUE FOR LPT #1
UL1 EQU 1 1$>00$00$00B {BIT VALUE FOR LPT #2

ORG 0100H ; PROGRAM START
MVI C, GETIOB {GET CURRENT IOBYTE VAL
CALL BDOS
AN1 (NOT LSIMASK) AND OFFH {KEEP ALL OTHER BITS
0R1 UL1 AND LSIMASK {SET IOBYTE FOR PRINTER #2
MOV E,A

C, SETIOBMVI ;F UNCTION TO RESET THE IOBYTE
CALL BDOS
RET ; IMMEDIATE CCP RETURN

>
END

GET AND SET CURRENT USER CODE:
Function 32.

CP/M-80 Version 2.2 permits the file system on a given drive
to be partitioned into up to 15 individual directory areas, so
that usage areas can be set up. For instance, the system opera-
tor could put all assembly language development programs
in one user area while having disk utility programs in an-
other. The BDOS allows the application programmer to de-
termine the currently logged user number and to modify it if
necessary. The following example sets the current user num-
ber up by one. If the highest user number is currently logged,
the user 0 area is selected.

GET CP/M-80 VERSION NUMBER: Function 12.

Sometimes it is necessary for an applications program to
"know" what version of CP/M-80 the program is running
under. Versions 2.0 and above support a feature which tells
the application program what the version number is. This is
necessary so that version-dependent functions, such as ran-
dom record file I/O, can be used if supported by the version
of CP/M-80 being used. The system call to get the version
number returns a two-byte value split into two parts as
follows:

{GET/SET USER EXAMPLE

GSUSR EQU 020H {FUNCTION 20
GET EQU OFFH {GET FLAG
BDOS EQU 0005H {SYSTEM ENTRY POINT

ORG 0100H {START UP POINT
MVI E ,SET {MAKE THIS A FETCH NUM RQST
MVI C, GSUSR
CALL BDOS {GET CURRENT USER #
INR A {BUMP RETURNED USER UP 1
ANI OOFH {MASK TO M0D(15)
MOV E,A {MOVE FOR SET TO NEfo USER
MVI C, GSUSR
CALL BDOS
RET ;CCP GETS US BACK

END

if (H) = 0 then this is a CP/M-80 System
(H) = l then this is an MP/M System
(L)= version number in hex

if (L) = 00 then older than CP/M-80 2.0
(L) = 20 then version CP/M-80 2.0
(L) = 21 then version CP/M-80 2.1
(L) = 22 then version CP/M-80 2.2

A program to read the CP/M-80 version number follows:
System Functions That Control The Disks

; VERSION NUMBER EXAMPLE

GETVERS EQU 00CH {FUNCTION 12

BDOS EQU 0000 5H {SYSTEM ENTRY POINT

ORG 01 OOH {PROGRAM START
MVI
CALL

C, GET VERS
BDOS

{FETCH VERSION NO.

MOV A,L {SAVE CP/M-80
STA CURVERS ; VERSION NO.
RET {BACK TO CCP

CUR VERS:
DS 1 {STORE VERSION NO.
END ; HERE

The data storage files for applications programs are stored on
the disk drives attached to the CP/M-80 computer. The
BDOS supports a number of functions that allow the state
and selection status of the drives to be controlled.

SELECT DISK: Function 14.

The simplest control function selects the current disk desig-
nated as the logged or default disk. The function is equivalent
to the console CCP command:

A>B:<c r>
B>

RESETTING THE CP/M-80 DISK SYSTEM:
Function 13.

The CP/M-80 operating system contains features to control
access to files on the disk drives. A directory checksum
scheme, beyond the scope of this presentation, permits the
operating system to determine when a disk has been changed
in a drive, thus preventing the wrong disk from being writ-
ten upon. However, in many cases an applications program
may require disk changes as functions are changed or new
files are required. This system control function permits the
application to force read/write status to be set for all drives
and drive A: to be logged; with this function the default disk
record buffer address can be reset to its default value of 080H
within the CP/M-80 base page. The following program se-
quence shows how to reset the disk system.

which changed the currently logged disk to drive B: . A BDOS
program to for the same purpose is given in the example pro-
gram of the next section below. Drive numbers correspond to
the console-displayed drive designators as follows:

A: = Drive # 0
B: = Drive # 1

P: = Drive # 15

Once a drive has been selected it has its directory "activated"
and is maintained in a logged in status until the next warm
boot, cold boot, or disk reset BDOS function.

Lifelines/The Software Magazine, November 198212

DETERMINE LOGGED DISK: Function 25. ;LOGIN VECTOR EXAMPLE

LOGIN EQU 018H ; FUNCTION 24
BDOS EQU 0005H ; SYSTEM ENTRY POINT

ORG 01 OOH
MVI C, LOGIN FUNCTION
CALL BDOS
SHLD LOCLOG ;SAV£ VECTOR HERE
RET ;T0 CCP

LOCLOG:
DS 2
END

An applications program can determine which disk drive is
the currently logged or default drive through use of this func-
tion. The BDOS will return in the (A) register the number of
the currently selected drive according to the table given
above. The program segment below shows a sequence of
BDOS interface code that first determines whether drive B: is
selected, and if not then does a BDOS call to change it.

; SELECT AND POLL LOGGED DISK DRIVE EXAMPLE

SELECT EQU OEH JUNCTION 14
ASKDRV EQU 19H ; FUNCTION 25
BDOS EQU 0005H ;SYSTEM ENTRY POINT

ORG 0100H ;PR0G START
MVI C, ASKDRV ;FIND OUT IF B:
CALL BDOS ; IS SELECTED
CPI 'B ' - 'A '
RZ ; DON'T SELECT IF

; ALREADY LOGGED
MVI E, 'B ' - 'A ' ;SET TO LOG AND
MVI C, SELECT ; SELECT B:
CALL BDOS
RET ;FIN1SHED WITH

; ANOTHER PROG
END

In a similar manner, the BDOS allows determination of
which drives are in the write protected read /only status. A
"1" bit in the returned vector indicates read/ only status for a
specific drive. The code here shows how to fetch it.

; READ/ONLY VECTOR EXAMPLE

ROVEC
BDOS

EQU
EQU

01DH
0005H

JUNCTION 29
; SYSTEM ENTRY POINT

ORG 01 OOH
MVI C, ROVEC JUNCTION
CALL BDOS
SHLD LOCROV ;SAVE VECTOR HERE

LOCROV:

RET ;T0 CCP

DS
END

2
DRIVE STATUS SET AND RESET:
Functions 28 & 37.

Drive status may be individually controlled by these func-
tions. Operation 28 allows a the currently selected drive to be
write protected (set to read/only). The process is simply:

GET ALLOCATION VECTOR AND DISK PARM
POINTER: Function 27 & 31.

Also provided are two more miscellaneous disk drive inter-
face functions which permit several special types of functions
to be performed. The first, function 27, returns an address in
the (HL) registers that points to a bit string in memory; this bit
string corresponds to the data block allocation map of the
currently selected drive. The map contains one bit in each
position where a block is allocated, starting with the MSB of
the first byte in the string. The length of the bit string depends
upon the total capacity of the drive in allocatable blocks.
Function 31 permits an application to determine the charac-
teristics of the currently selected drive. The BDOS returns an
address in the (HL) registers which points to a table of 33
bytes describing the current drive. Data in the table includes
such information as: number of possible directory entries on
the disk, number of allocatable blocks on the disk, and, indi-
rectly, the size of each disk block. The program below is a
comprehensive example of how these functions can deter-
mine the remaining space left on a selected drive. The pro-
gram stores the available space on the specified drive in the
first byte of the default FCB, into memory location
"KPDISK" and then exits to the CCP. The reader can adapt
the code as desired.

WPDSK EQU 01CH
BDOS EQU 0005H

MVI C, WPDSK ;WRITE PROTECT DISK
CALL BDOS

The write protect status of a specific disk may be removed by
function 37, which deactivates the directories of each drive
specified at call time. Each drive then becomes read/ write
again by default, but requires reactivation through reselec-
tion. The reset drive vector is a 16-bit value passed to the
BDOS with a "1" bit in each bit position for a drive that re-
quires resetting. The most significant bit of the 16 bit quantity
corresponds to drive P: and the LSB to drive A: . The code se-
quence to reset drive B: would be:

RESDSK
BDOS

EQU
EQU
MVI
LX1
CALL

025H
000 5H
C, RESDSK JUNCTION CODE

D,0000$0000$0000$0010B ;DRIVE B: BITSET
BDOS

GET DRIVE LOGIN AND READ
ONLY VECTORS: Function 24 & 29.

The BDOS keeps track of all drives selected since the last boot
or disk reset functions. These drives are considered in an on-
line status, because the system knows immediately what the
space allocation map of the drive is and whether the drive is in
read/only status or not. Function 24 allows the application
program to determine which subsets of the current drive
complement are in this online logged status. The vector re-
turned in the (HL) register pair is a bit map like the one above,
where a "1" bit means the drive is active. The most significant
bit of the 16-bit number corresponds to drive P: . The code be-
low fetches the vector and saves it in a local data area.

;CP/M BDOS INTERFACE EQUATES

BASE EQU 0000H ;BASE OF CP/M SYSTEM
L0GDRIV EQU 0004H4BASE ; LOCATION CURRENTLY LOGGED DRIVE
BDOS EQU 0005H4BASE ;THE BDOS 1/0 VECTOR
SLCTDSK EQU 14 ;SELECT DISK DRIVE
GALVEC EQU 27 ;GET ADDRESS ALLOCATION VECTOR
GDSKP EQU 31 ;GET ADDR OF DISK PARAMETER TABLE

J
ORG 01 OOH

; PROGRAM TO FETCH REMAINING DISK SPACE IN KBYTES

(continued next page)
Lifelines/The Software Magazine, Volume III, Number 6 13

MOV A,M
H
ALLSAVE
H,08h

;SAVE NEW POINTER
;SET BIT COUNTER TO MAX

INX
SHLD
MVI

STACT:
RLC ;GET ALLOCATION BIT TO CARRY
JC ALLOC ; DON'T COUNT ALLOCATED BLOCKS
PUSH H
LHLD KPDISK ;GET KBYTES LEFT COUNT
DAD B ;ADD IN ONE MORE BLOCK COUNT
SHLD KPDISK
POP H

ALLOC:
DCX D ;DEC TOTAL BLOCK COUNT
MOV L,A
MOV A,D
ORA E ;ALL BLOCKS SCANNED YET
MOV A,L ; RESTORE ALLOC BIT PATTERN
JNZ UALLOC ;MORE TO COUNT

LDA SAVDRIV ; RETURN DISK SELECT TO PREVIOUS
MOV E,A ; SELECT IN BDOS
MVI C,SLCTDSK ;SELECT DISK FUNCTION
CALL BDOS
RET ;BACK TO THE CCP

•PROGRAM DATA STORAGE ALLOCATIONS

BLKSIZ:
DS 2 ;STORAGE FOR ALLOCATION BLOCK SIZE

ALLSAVE:
DS 2 ;STORAGE FOR ALLOCATION PNT SAVE

SAVDRIV:
DS 1 ;SAVE CURRENT DISK SELECT DURING RELOG

KPDISK:
DS 2 ;STORAGE FOR KBYTES PER DRIVE LEFT

END

SPCGET:
LDA L0GDR1V ;GET CURRENTLY LOGGED DRIVE, SAVE
ANI (FH ;STRIP OUT USER NO.
STA SAVDRIV ;SAVE CODE

>
LDA FCB ;CHECK IF SAME AS S LECT
DCR A ; ADJUST FCB DRVE TO MATCH SLCT DRVE
MOV E,A ; . . SELECT IN BDOS
MVI C,SLCTDSK ; SELECT DISK FUNCTION
CALL BDOS

MVI C.GDSKP ;F1ND ADDR OF DISK PARAMETER HEADER
CALL BDOS
LXI B ,0002H ; INDEX TO BLOCK SHIFT FACTOR
DAD B
MOV B,M ; (B) = BYTE BLOCK SHIFT FACTOR
INX H
INX H
INX H
MOV E,M ; (DE) = WORD DISK BLOCK COUNT
INX H
MOV D,M
INX D

MOV A,B ; ADJUST SHIFT FOR KBYTE SIZE
SUI 03H
LXI H,0001H ; CALCULATE BLOCK SIZE

SPCCAL:
ORA A ;KN0W KBYTES PER BLOCK?
JZ SPCKNW
DAD H ;DOUBLE # SECTORS PER TRACK
DCR A ; DECREMENT BLOCK SHIFT
JMP SPCCAL

SPCKNW:
MOV C,L ; (BC)=KBYTES PER BLOCK
MOV B,H
LXI H,0 ; INITIALIZE KPDISK
SHLD KPDISK
PUSH B ;SAVE KBYTES/BLOCK
PUSH D ;SAVE NUMBER OF BLOCKS
MVI C,GALVEC ;NOW POINT TO THE ALLOCATION VECTOR
CALL BDOS ;(HL)=ALL0CATI0N VECTOR ADDRESS
POP D
POP B

SHLD ALLSAVE ;SAVE ALLOCATION POINTER
MVI H,1 ;SET MINIMUM START BIT COUNT

UALLOC:
DCR H ;DEC BIT COUNT
JNZ STACT ; STILL ACTIVE BYTE

LHLD ALLSAVE ;GET POINTER

The next part in this series will present the the CP/M-80 file
system as viewed from the BDOS interface aspect. The FILE
CONTROL BLOCK (FCB) will be presented. In addition,
preparing files for I/O and the actual I/O procedures will be
presented. The series will round out to a conclusion with a
comprehensive programming example, presenting a set of
subroutines which permit the execution of character-by-char-
acter I/O with a file. Q

(Editorial Comments cont. from pg. 6)

channel for rapid transmission of appli-
cations programs - whether satellite,
microwave, fiber optic or some combi-
nation - are inevitable and will be
available in the near future.

flat screen CRT 8088/Z80 machine and
work comfortably and efficiently at
55,000 feet. The integral modem will
permit you to dial your office upon
landing and transfer files either to your
machine or back to the office micro.

Notice
The October i s sue was
placed into the mail on Sep-
tember 28th. If you had any
problem with the timeli-
ness of this issue, please
call our Subscription De-
partment at (212)722-1700,
or write to Lifelines/The
Software Magazine Sub-
sc r ip t i on Depa r tmen t ,
1651 Third Ave. , New York,
N.Y. 10028. We expect to
place this i s sue , dated
November 1982, into the
mail around October 27th.
Each month we will print
the date of the previous
issue’s mailing and would
appreciate your help in
tracking the deliveries.

If you are traveling on board a 747 with
public telephones, you won't even have
to wait for the plane to land. Imagine
getting "A> " from your New York of-
fice while you're winging your way
across the Pacific at 55,000 feet to
Hawaii.

Having finished the day's work you'll
fold the screen down, place it on the
night stand in your hotel and head off
for an evening's entertainment. The
next morning your micro will awaken
you with its built-in alarm clock and
review your day's appointments. You'll
never leave home without it ...

Finally, in looking at telecommunica-
tions opportunities ask yourself about
having several micros in your life, per-
haps one or two at home and another at
work. The two at home can back each
other up and supply extra security in
cases where they serve serious profes-
sional purposes, while the micro at
work can be used for daily business and
provide a machine to which files can be
transferred when you stay at home to
work.

And of course with the rapid evolution
of flat screen CRT technology you will
soon be able to climb on board a 747
with your portable, bubble memory,

Lifelines/The Software Magazine, November 1982
14

FIGURE 1. DETAILED SUMMARY OF CP/M-80 2.2 SYSTEM CALLS

Function
Number

Function

Entry Value to
BDOS Passed in
(DE) or (E) regs

Return Value from
BDOS Passed in

(HL) or (A) registerDEC HEX

0 00 System Reset ★ ★ ★ ★ * * * *
1 01 Console Input ★ ★ * ★ (A) = character
2 02 Console Output (E) = character ★ * * *
3 03 Reader Input ★ ★ ★ ★ (A) = character
4 04 Punch Output (E) = character * * * *
5 05 Printer Output (E) = character ★ * * *
6 06 Direct Console I/O (E) = 0FFH is input

(E) = chr is output
(A) = character

* * * *
7 07 Get IOBYTE * * * ★ (A) = IOBYTE
8 08 Set IOBYTE (E) = IOBYTE * * * *
9 09 Display Console String (DE) = string addr ★ ★ ★ ★

10 0A Input Console String (DE) = string addr (A) = # chr input
11 0B Get Console Status ★ * * * (A) = 000H idle

(A) = 0FFH ready
12 OC Get CP/M Version Number * * ★ * (HL) = Version #
13 0D Reset Disk Subsystem ★ * ★ ★ ★ ★ ★ ★
14 OE Select Disk Drive (E) = disk number * * * *
15 OF Open a File (DE) = FOB address (A) = dir code
16 10 Close a File (DE) = FCB address (A) = dir code
17 11 Search for File (DE) = FOB address (A) = dir code
18 12 Search for Next * * * * (A) = dir code
19 13 Delete File (DE) = FCB address (A) = dir code
20 14 Read next Record (DE) = FCB address (A) = error code
21 15 Write next Record (DE) = FCB address (A) = error code
22 16 Create New File (DE) = FCB address (A) = dir code
23 17 Rename File (DE) = FCB address (A) = dir code
24 18 Get Login Vector * * * * (HL) = login vector
25 19 Get Logged Disk Number * * * * (A) = logged disk
26 1A Set R/W Data Buff Addr (DE) = buffer addr ★ ★ ★ ★
27 1B Get Allocation Vector ★ ★ * * (HL) = alloc vector

address
28 1C Write Protect Disk (E) = disk number * * * *
29 1D Get Read Only Vector ★ * * ★ (HL) = R/O vector
30 1E Set File Attributes (DE) = FCB address (A) = dir code
31 1F Get Addr of Disk Parms * * * * (HL) = parm addr
32 20 Get/Set User Select (E) = 0FFH get (A) = current user
33 21 Read Random Record (DE) = long FCB adr (A) = error code
34 22 Write Random Record (DE) = long FCB adr (A) = error code
35 23 Get Size of File (DE) = long FCB adr (rO-2 = rec ent)
36 24 Set Random Record Num (DE) = long FCB adr (rO-2 = rec numb)
37
38
39

25
26
27

Reset Drive
Not used
Not used

(DE) = drive vector ★ ★ ★ *

40 28 Write Random with (DE) = long FCB adr (A) = error code

Lifelines/The Software Magazine, Volume III, Number 6
15

Feature

8080 Assembler Programming
Tutorial, Subroutines, Part 5

Ward Christensen

Where To Read Or Write:
The DMA Address

More Disk I/O

This month, we'll explore some subroutines for disk I/O:
read a byte at a time, and write a byte at a time. Also, I'll sup-
ply some information on using buffers other than the default
disk I/O buffer at 80H for I/O.

Reading or writing a file a byte at a time can be done at sev-
eral levels of complexity.

The first simply reads or writes a sector at a time, using the
default buffer at 80H, and employing a pointer in memory
which points to the next byte to be read or written in that
buffer.

For more disk-intensive work, a buffered read or write is
appropriate, because the CP/M-80 disk layout is organized
to support the relatively fast reading and writing of consecu-
tive sectors. If you read or write, then process your file for a
"while" (perhaps by sending it out via a modem, or printing
it), you might not be in a position to get back to the disk to
read or write the next sector at an optimal time. Also, larger
buffers minimize the effects of head loading and disk wear.
Hard disks technically are so fast that you could go back to
doing sector at a time reading, with little performance im-
pact. This holds true because there is no delay for head load-
ing, and only about an 8 milliseconds delay for disk rota-
tional speed (as opposed to an 83ms delay for an 8" floppy).

If you don't buffer the I/O for reading (and/or writing)
multiple files, you can get into severe performance problems.
On single density floppies, the time spent seeking between
one file and another (seek time) will be severely prolonged.
This slowness can be improved by putting the files on sepa-
rate disks. Buffering the files and putting them on separate
disks is the best idea.

Some disk controllers directly access memory in their hard-
ware, leaving your processor free for other work during a
disk transfer. The term for this feature is "direct memory ac-
cess" or DMA. While many controllers simply use the BIOS
to input a character from the disk controller, and store it in
memory (for example, with "mov m,a"), CP/M-80 uses the
term DMA to mean simply the address at which the one
128-byte sector from a disk is read or written by the BIOS.

BDOS function 26 sets the DMA address based upon what is
in the DE register. For example, a program which wants to
read a sector into a buffer at address BUFF, would:

Ixi d.buff
mvi c ,setdma
call bdos

•

iDUff ds 128 ;128 byte buffer
bdos equ 5
setdma equ 2b

This method may also be used to read larger blocks from
disk, say 2K or so . By simply moving the DMA address down
128 bytes and doing another read, subsequent 128-byte
chunks of the buffer are filled. I'll use this technique in the sec-
ond half of this article - buffered reading and writing.

Un-Buffered Reading

Here is a simple byte-at-a-time read routine, using the default
FCB at 5CH, and the default buffer at 80H. I call it "unbuf-
fered" since it doesn't read multiple sectors. It reads the
'least" CP/M-80 will let you read from disk: one sector.

rd byte Ihld bufptr ;get pointer
mov a,h ;see if at 100h
dor a ; a=0 if so
jnz noread ;no, so get char

; have to read a sector
J

Ixi d,fcb ;point to fcb
mvi c,read ;get fnc
call bdos ;do the read
ora a ;test for errs
jnz rderrs ; got err
Ixi h,80h ;re-init buf ptr

Another problem with multiple unbuffered files is the fact
that some floppy and hard disks have sector sizes larger than
128 bytes. If you read a sector from one file, the BIOS reads
perhaps 256, 512, or 1024 bytes. If you then write one sector
to another file, the BIOS has to pre-read the block which that
128-byte sector fits into. If you then go back and read, the
BIOS has to "flush" the modified write buffer back to disk.
Only systems which employ "invisible" buffering help this
situation, such as the Ithaca CACHE BIOS or the TURBO-
DOS system, or programs running under Bob Van Valzah's
track-buffering "SPEED.COM" and "FAST.COM".

Lifelines/The Software Magazine, November 198216

To make it a complete program, just add the error routine for
not finding the file:

noread mov a,m {get a byte
inx h ;point to next
shld bufptr ;save pointer
ret ; and return

; got a read error, see if eof

rderrs dcr a ;was it 1 (=EOF)?
jnz rderr

; not an error, just eof

mvi a,'Z z-40H {get a ctl-Z
ret ;return with it.

; got non-zero read: see if E.O.F.

rderr Ixi d,ermsg ;point to msg
mvi c, print {get print fnc
call bdos ;print err msg
jmp 0 ;exit to warm boot

; error msg ($ terminated)

ermsg db '++ disk read error ++$ z

; buffer pointer, init to 100H so first
; call to RDBYTE does a sector read,

bufptr dw 100h ;init to force read

bad file Ixi
mvi
call

badfmsg db

d,badfmsg
c,print
bdos
0
0
z++ file not found ++$ z

and finally, add the necessary equates which were used. Ill
include all the equates that will be used anywhere in this
article.

:memory address equates:
odos equ 5
fcb equ 5CH
;console char I/O functions:
rdcon equ 1
wrcon equ 2
print
{file

equ
functions:

9

open equ 15
close equ 16
erase equ 19
read equ 20
write equ 21
make equ 22
setdma equ 26

Un-Buffered WritingThe only additional processing necessary is to first open the
file, like this:

Un-buffered writing is very similar: it simply uses a pointer
into the default buffer at 80H. The difference is in how the
buffer pointer is initialized. For buffer reading, it is initialized
to 100H, so the first attempt to read a byte will cause a sector
read. For writing, the buffer pointer is initialized to 80H, so
that we can write one sector - 128 characters - before needing
to physically transfer the sector to disk.

Ixi d,fcb ;point to FCB
mvi c ,open ;get fnc
call bdos ;open the file
inr a ;was it OFFH?
jz badfile ; yes,{ no such file

To be a complete program, first set the code generation origin
to 100H via:

org 100h

Then load a stack pointer, such as:

Ixi sp,stack

with stack defined somewhere (typically at the end of the pro-
gram) as:

ds
stack equ

Recall the label is at the end of the stack area, since the stack
works down in memory.

To make this a complete program, which for example, just
lists the file to the console, add a call to RDBYTE and a call to
BDOS to write the character to the console:

The initialization for writing is to MAKE a file. Recall from
last month that you must ERASE the file first, in case it al-
ready exists in the directory, because MAKE does not check
for a duplicate entry. Thus this initialization would prepare
for writing a byte at a time into a new file:

Ixi d,fcb {point to fcb
mvi c.erase ;ask bdos
call bdos ; to erase it

Ixi d,fcb {point to fcb
mvi c,make ;ask bdos to
call bdos ; make a new file,
inr a ;was it Offh (bad?)
jz makerr ; yes, error

. the actual program itself

making file; error

makerr

; error

makmsg

Ixi d,makmsg {point to msg
mvi c, print {get print fnc
call bdos {print err msg
jmp 0 {exit to warm boot

msg (z$ z terminated)

db '++ can z z t make file -
db 'directory probably full ++$'

(continued next page)

loop call r bjrte
cpi Z -4 Oh
jz 0
mov e,a
mvi c,wrcon
call bdos
jmp loop

Lifelines/The Software Magazine, Volume III, Number 6 17

The call to make a file returns Offh if it was unable to make the
file - typically because the directory is full - so that's what the
error message routine tells the user.

Ixi d,fcb ;point to fcb
mvi c,write {get fnc
call bdos ;do the write
ora a ;test for errs
jnz wrerr ; got errs
ixi h,80h ;re-init buf ptr

shld buf ptr ;save pointer
ret ; and return

write error

Ixi d,wermsg ;point to msg
mvi c, print {get print fnc
call bdos ;print err msg
jmp 0 ;exit to warm boot

msg (z$ z terminated)

db '++ disk write error ++$'

making file

Ixi d,makmsg ;point to msg
mvi c, print {get print fnc
call bdos ;print err msg
jmp 0 {exit to warm boot

msg ('$' terminated)

db '++ can z z t make file -
db 'directory probably full ++$'

WRBYTE simply writes a byte to the file. Here is a program
which simply reads characters from the console, and directly
calls WRBYTE to write the characters to disk. No correcting
is allowed - if you pressed backspace, the backspace would
be written to disk. End the test program by typing a control-
Z, the CP/M-80 end-of-file character. The routine then en-
sures enough EOF characters are written so that WRBYTE
will have written the sector to disk.

nowrite

; got a

wrerr

; error

j
wermsg
•

; error

makerr

; error

makmsg

wrtest Ixi sp,stack
Ixi d,fcb ;point to fcb
mvi c,erase ;ask bdos to

•
call bdos ;erase file

Ixi d,fcb ;point to fcb
mvi c,make ;ask bdos to
call bdos ;make new file.

inr a {test Offh (bad?)

• Jz makerr ; yes , error

wrlp mvi c,rdcon {get char from
call bdos {console
push psw ;save for eof test
call wrbyte ;write to disk
pop psw {get char back
cpi 1ah ;is it eof?
jnz wrlp ;no, loop ; buffer pointer, init to 80H

iDufptr dw 80h ;init for writing; done writing characters via wrbyte. now
; pad the sector with EOF chars (1AH), so
; that wrbyte will have written the sector,
; then close the file and exit Buffered Reading
wreof Ida wbptr ;get pointer

cpi 80h ;at inew sector?
jz wrdone { yes, done
mvi a, 1ah ;no, write another
call wrbyte 9 eof char
jmp wreof and loop

I have a standard routine which I use for reading files using
buffers larger than one sector. This is typically necessary
when more than one file is concurrently open. Therefore, one
(or both) of the files will use some FCB other than the default
one at 5CH.

To carry out this step, I use something that large computer
operating systems utilize so much - I tend to think it "glues
them together" - namely control blocks.

Control blocks are areas of memory containing a specific col-
lection of data: pointers, counters, flags, etc. The only
control block used by CP/M-80 is the File Control Block. It
contains: 1) fixed length strings; 2) the filename and filetype,
as well as a count; 3) the file size, and several bytes or words;
4) addresses of where the file is on disk.

My control block contains three words and a byte. The
layout of the control block, which I call an "EFCB" or "ex-
tended file control block", is:

word pointer to the buffer
word count of bytes left in buffer
byte number of pages (256 bytes) in buffer
word pointer to FCB with filename.

; a sector containing at least one EOF char
; has been written, so just close the file
•

wrdone Ixi d,fcb {point to fcb
mvi c,close {get close fnc
call bdos {close it
inr a {test for Offh
jz clserr ;if so, bad
jmp 0 ; else done

; got close error. Tell user.

clserr Ixi d,cimsg ;point to msg
mvi c, print ;get print fnc
call bdos ;print err msg

jmp 0 ;exit to warm boot

; error msg ('$ z terminated)

cimsg db '++ close error ++$'

Here is the WRBYTE subroutine itself:

wrbyte Ihld buf ptr {get pointer
mov m,a ;store char
inr 1 ;bump low pointer
jnz nowrite ;not at 100, no write

; have to write a sector

I use this in my buffered RDBYTE routine, by pointing HL to
the EFCB, and calling RDBYTE.

The actual coding of an EFCB for reading would be as
follows:

Lifelines/The Software Magazine, November 198218

EFCB1 DW BUFF ;buffer addr
DW 0 ;bytes left or to write
DB 20 {buffer size in pp.
DW FCB ;FCB addr

inx h ; fcb
mov h,m ; addr
mov l,a ; to hl

; loop, reading sectors, until buffer
; filled or physical EOF on the file.In this case, I use the system FCB. If I had another file open at

the same time, it's EFCB might look like:
rd bip mvi a, 1ah {get eof char

stax d {save in case eof
push b {save sector count
push d {save dma addr
push h {save fcb addr
mvi c,setdma ;set dma addr
call bdos ; into buffer
pop d ;get fcb
push d ;save it back
mvi c,read ;request reading,
POP d ;get fcb
call bdos ;read one sector
ora a ;test read
pop h ;hl=dma, de=fcb
pop b ;get sector count
jnz rdbret ;got eof
mov a.l ;get lo buf addr
adi 8fih ;to next buff
mov l,a ;put it back
mov a,h ;add in carry
aci 0 ; to h, if
mov h,a ; there was one
xchg ;dma to de, fcb to hl
dcr b ;more sectors?
jnz rdblp ;yes, more

; the buffer is filled. Set up the FCB

rdbret pop h ;get fcb pointer
dcx h ;to length
mov a,m ;get length
dcx h ;to count
mov m,a ;set page count
dcx h ;to lo count
dcx h ;to hi fcb
dcx h ;to efcb start
jmp rdbyte ;loop thru again

; byte
•

is in buffer, get; it

rdbnord inx h ;to length
mov a,m ;get length (pages)
xchg ;buff to hl
add h ;add len to start
mov h,a ;hl = end of buff
mov a,l ;get end
sub c ;subtract bytes left
mov l,a ;put it back
mov a,h ;do same for high
sbb b ;pointer & count
mov h,a ;hl = data pointer
mov a,m ;get byte
xchg ;efcb back to hl
cpi 1ah ;eof?
rz ;yes, leave pointers
dcx b ;decr count
dcx h ;back to "bytes left"
mov m,b
dcx h
mov m,c ;store back count
ret

EFCB2 DW
DW
DB
DW

BUFF2 {buffer addr
0 {bytes left or to write
20 {buffer size in pp.
FCB2 ;FCB addr

The buffers themselves would have to be reserved with a size
equal to that declared in the EFCB, namely 20 pages. You can
let the assembler compute this size for you, instead of having
to multiply 256 by 20:

buff ds 256*20 ;20 sector buffer
buff2 ds 256*20 ;20 sector buffer

To actually read from a file:

Ixi
call

h.efcbl
rabyte

OR

Ixi h.efcb2
call rabyte

Here is the actual RDBYTE routine itself. To follow it, you
should picture the layout of the EFCB, and, realizing that HL
initially points to its first byte, keep track of where it points as
RDBYTE progresses instruction by instruction. For example,
the first INX H will point it to the second byte of the buffer
address, etc.

Some less obvious techniques will be explained at the end of
the listing.

{RDBYTE, HL POINTS TO EXTENDED FOB:

2 BYTE BUFFER ADDR
2 BYTE "BYTES LEFT" (INIT TO 0)

1 BYTE BUFFER SIZE (IN PAGES)
2 BYTE FOB ADDRESS

rd byte mov e,m ;get buffer addr
inx h • into
mov d,m J DE
inx h ;skip buf addr
mov c,m ;get bytes left
inx h • into
mov b,m • BC
mov a,b ;’get count
ora c {see if zero
jnz rdbnord ;no read if > 0

; count of bytes left = 0, so fill buffer

;to buffer size
;get count
;multiply by 2
jsector count in b
;to fob
;save fob pointer
Jget

Nothing too complicated here, but a few explanations:

add a {multiply by 2

is used to take the number of 256-byte pages in the buffer, and
(continued next page)Lifelines/The Software Magazine, Volume III, Number 6

19

convert this information to the number of sectors to read,
'add a" simply doubles the contents of the accumulator. Note
that this limits the buffer size to 127 (7FH) pages, or just under
32K. 128 or more pages would mean the "add" a would lose a
bit off the top end.

The routine which gets the FCB address might bear more ex-
planation:

pointing to the beginning of the buffer. (You can think of a
register pair as two bytes - the high byte is the "page" number,
the low order, the "byte within that page". If a buffer starts at
0200H, then is three pages long, the byte past the end of the
buffer is at 0200H + 0300H, or 0500H. Thus if I think of
0200H as 02 00, 1 can simply add 03 to 02 and get 05 00 - 1 can
work with the high register in terms of pages.)

Buffered Writing
push h ;save fcb pointer
mov a,m ;get
inx h • fcb
mov h,m J addr
mov l,a to hl

My buffered writing subroutine is similar to the buffered read
routine in that it uses the same extended FCB format. But in
this case the second word is a count of characters in the buffer,
and the buffer is written whenever it is filled.

When you are done writing things a byte at a time, there will
usually be bytes left in the buffer that haven't been written to
disk. Thus it is necessary to flush the partial buffer to disk.
For this I coded a routine called "FLUSH", also shown below.

Here is the write-byte routine. Again, it will help to have a
picture of the EFCB, and keep track of what HL points to as
you go from instruction to instruction.

The intent is to get the FCB address into HL, to use HL as a
pointer to it. To load DE from HL is easy, as was done in the
first three instructions:

rdbyte mov e,m ;get buffer addr
inx h • into
mov d,m • DE

Applying this same logic and doing this:

mov l,m {THIS
inx h {DOESN'T
mov h,m ;WORK

doesn't work, because the mov l,m would clobber the cur-
rent value of HL. Instead I use

(mov a,m
inx h

to get the first byte and point to the next, then

mov h,m
mov l,a ; to hl

which finally puts the address in HL. "mov h,m" works
because HL is used as an address before it is clobbered by
loading h.

The sector read routine keeps bumping the DMA address, so
the next sector is read further into the buffer.

The routine assumes that a non-zero code on the read means
end of file - it might be enhanced to check for a read error.

The only other point in need of explanation is the overall
logic of using the character count: I wanted the simplicity of
initializing a DW to 0, so that if I re-use an EFCB, it is as
simple as zeroing out that DW. (The FCB itself would also be
reinitialized, by putting a new name into it, zeroing the extent
byte, etc.)

I could have used a pointer into the buffer to find out where to
get the next character. But then initializing the pointer to indi-
cate an empty buffer would have meant computing the end
address of the buffer, and storing it. It seemed easier to use a
count. Since the count is of the number of bytes remaining, I
have to subtract it from the end of the buffer to point to the
current character. The end of the buffer is computed by
simply adding the page size of the buffer to the high register

wrbyte mov e,m {low buf addr to e
inx h ;point to hi
mov d.m :hi buf addr to d

de now has buffer address
inx h ;to count
mov c,m {low count to c
inx h ;to high count
mov b,m :hi count to b

be now has count of bytes in buff
push
xchg

d ;save fcb pointer
{prepare for dad

buffer base + buffer count = next char:
dad b ;to next byte
mov m,a ;store it
inx
xchg

b {count this char
;put things back

pop d {restore fcb ptr

; see if buffer is full, by comparing high
; byte of count to buffer size in pages,
; since the high reg represents the #
; of pages.

inx h 5get
mov a,m ; size
emp b {full?
jnz wrbnowr ;no write

; buffer is full. Compute # sectors to
; write, write the buffer.
{

add a ;multiply by 2
mov b,a ;sector count in b
inx h ;to fcb
push h ;save fcb pointer
mov a,m 5get
inx h ; fcb
mov h,m ; addr
mov l,a ; to hl

wrblp push d ;save dma addr
push h ;save fcb addr
push b
push h
mvi c.setdma ;set dma addr
call bdos
POP h
pop b

Lifelines/The Software Magazine, November 198220

push h
mvi c, write
call bdos
pop h
pop d
pop b
xchg
ora a
jnz wrberr
push h
Ixi h,80h
dad d
xchg
pop h
dcr b
jnz flushl
xchg

pop d ;get fcb
push b
push d
mvi c, write
call bdos
pop d
pop b
pop h' ;hl=dma, de=fcb
ora a
jnz wrberr ;got err
mov a.l ;get lo addr
adi 80h ;to next buff
mov l,a ;put back
mov a,h ;get high
aci 0 ;add carry if any
mov h,a ;put high back
xchg ;dma to de, fcb to hl
dcr b ;more sectors?
jnz wrblp ;yes, more

wrbret pop h ;get fcb pointer
dcx h ;to length
dcx h ;to count
mvi m,0 ;set write count
dcx h ; to 0
mvi m,0
mvi c.setdma ;reset
Ixi d,80h ; dma
call bdos ; to 80h
ret

5
wrberr Ixi d ,wrerms

mvi c, print
call bdos
jmp 0 ;warm boot on error

wrerms db z++error1 in wrbyte routine++$

wrbnowr dcx h ;to length
mov m,b ;set new length

dcx h
mov m,c
ret

: Call this routine to flush the buffer
; when you are done writing.

flush mov e,m
inx h
mov d,m ;de=buf addr
inx h
mov c,m
inx h
mov b,m ;bc=bytes in buff
inx h ;to count
mov a,b
ora c
rz ;nothing to write
mov a,c ;get low count
add a ;shift "128" to carry
mov a,b ;get hi count
ral ;x2, add in carry
inr a ;allow for partial
mov b,a ;b=# sectors to write
inx h ;to fcb
mov a,m
inx h
mov h,m
mov l,a ;hl=fcb

flushl push b
push d
push h
mvi c.setdma
call bdos
pop h
pop d
xchg
push d

mvi c,close
call bdos
inr a
rnz
mvi c, print
Ixi
call
jmp

wrcmsg db

d,wrcmsg
bdos
0 ;reboot on error

z++output file close error ++$

The comments should pretty well explain what is going on in
the write routine. Flush is mostly uncommented. You might
as well get used to the 'real world" of trying to figure out how
an uncommented routine works.

Again, I use the "add a" trick to double the number of pages in
the buffer, thus arriving at the number of sectors to write.

Also note: I reset the DMA address to 80H when I exit the
write. This is because of an old CP/M-80 bug in SUBMIT that
bombs if you have exited a program leaving the DMA ad-
dress set at other than 80H. Actually, if you warm boot by
JMPing to 0, that will reset the DMA address. However, it is
nice if programs simply save the stack and return to CCP, be-
cause that saves the time of the warm boot. In this case it is
necessary to reset the DMA address to 80H to allow the pro-
gram to run correctly under SUBMIT (more correctly - to al-
low the next program in the SUBMIT file to execute).

In many programming examples I have loaded a word from
memory pointed to by HL, or stored it back. There is no need
to store it back starting at the lowest address first. For exam-
ple, in WRBYTE, I am pointing past the EFCB byte count, so
have to back up to it. Rather than:

wrbnowr box h ;to length
dcx h
mov m,c ;set new length
inx h
mov m,b
ret

I simply drop the updated count back into the FCB "back-
wards":

wrbnowr dcx h ;to length
mov m,b ;set new length
dcx h
mov m,c
ret

(continued next page)
21Lifelines /The Software Magazine, Volume III, Number 6

The last thing is the flush routine; it simply uses the count of
bytes in the buffer to compute the number of sectors to write,
writes them, closes the file, and returns.

If you have tried to follow stack usage, you might have had
problems. There is nothing saying that if you have PUSHed
D, you have to POP D. You have to somehow account for it,
for instance via POP H. I made significant use of this in the
WRBYTE routine, commenting what was being pushed (e.g.
DMA address, FCB address, etc.), rather than being in-
terested in which register (B or D or H) was being PUSHed or
POPped. To help check out this type of routine, I draw lines
on my paper to see how the pushes and pops are paired:

+----- push b
[+— push d
[| +-push h
1 I I * ’•
+- I - -pop b

+- I -pop d
+-pop h

;these are
;in the wrong
;order

The fact that the arrows cross lets you know there is a prob-
lem. This is a very common programming bug: to pop in the
same order that you pushed. The effect is that the value for-
merly in H will be popped into B, and what was in B will be
popped into H. D will remain the same. You should only push
one register and pop another if this specifically meets your
needs - as it did in WRBYTE where, because all calls to BDOS
have to have the value (DMA address or FCB) in DE, I pushed
H with the FCB address, then popped it into DE to be ready to
use it in a BDOS WRITE call.

That concludes this edition of the tutorial. If you're keeping
track, I merged what had originally been outlined as section
13 - the CP/M interface - into section 12, subroutines. Thus,
this is the last official piece of the tutorial.

Future tutorials will discuss program debugging using DDT
(or better yet by far, SID). I'll also get into macros, and how
they can help cut down programming time by reducing com-
monly needed routines to a minimum of coding. At that
point, this series will end, unless extended by any questions
or comments received. Q

+—-----push d ;save dma addr
1
1
1 1
1 I

h-----push
1 +— push
1 1 +-push

h
b
h

;save fob addr

1 1
1 1

1 1
1 1

ravi

1 I 1 call
l +-pop

1 +— pop

CjSetdma
bdos
h
b

. ;set dma addr

1 H

1
1
1
11

h-----pop
+— push
1 t"Pu?h

I mvi
i +-pop
+— pop

d
b
d
c,write
d
b

;get fob

+— -----pop h ;hl=dma, de=fcb

The rules for such diagramming are that the lines may be
nested as much as necessary, but no lines can cross:

M4VBE ITS H1S
IN IT IALS- - NO?
UiS BIRTHDATE?

"iNcoeRetr RespoNse"
“|Nce*UUfCF

M ii»c*Mter BesP— “

TU\5 WOULb'vE BEEN
ALOT SIMPLER
Ml KE HAb REMEMBERED

TO TELL ME HlS C©©E'.

ARKtWr, SuwY —
VW-t> IT RIGHT TM«?6 1

•Hrt

m

COMPUTER
RKvfttrX I *

WAT
F7 . .AMP VoNT TRY
ANYTUlNC, FUNNY*

K
IB

IT
S

Lifelines/The Software Magazine, November 198222

Feature

An Alternative To
CP/M-80’s STAT

Thomas N. Hill

system to access the various physical devices, the systems
programmer can thus 'mask' the physical characteristics of a
peripheral from the user. The user only needs to know that if
he or she wishes to get information from the data logger, for
example, the IOBYTE RDR: field must merely be set to the
proper value.

The four fields of the IOBYTE are defined as follows:

• Bits 0 and 1 are termed the CON: field, and, in conjunc-
tion with the proper BIOS routines, specify which
physical device is considered the CP/M console.

• Bits 2 and 3 control the physical device selection for the
READER device. The RDR: device is considered input
only. Attempts to output to the RDR: may have in-
teresting effects, depending upon the routines imple-
mented by the system programmer and which program
is attempting RDR: output. Note that the standard
CP/M program PIP will not accept RDR: device output.

• Bits 4 and 5 control the PUN: field. The cautions de-
scribed for the RDR: device also apply here, in reverse.
The PUN: is considered an output only device.

• Bits 6 and 7 control the LST: device assignment. This
field selects the device used for printer output from
CP/M programs. In many cases a system may have two
printers, one for high speed program listings and draft
copies, and another for letter quality final output. The
LST: field allows the user to choose between system
printers.

The use of STAT to examine and alter the IOBYTE also leaves
something to be desired. To make life easier for myself and
for the non-technical personnel who have occasion to use my
computer, I set out to create a menu-driven, user-friendly
method of dealing with the IOBYTE. The program SETIO is
the result. It provides four easily remembered commands
(WHAT, WHERE, SET, and DEFINE) and a method for
allowing the user to define his/her own device names for the
various physical devices connected to the system. If the user
enters the program name (SETIO) upon the CP/M command
line with no following command tail, the program enters an
interactive menu mode, so users unfamiliar with the program
can get acquainted. If a command is placed following the
SETIO program name, the program executes the command
and immediately returns to the CP/M command level. (If
you put the SETIO command at the CP/M command line,
the program assumes you know what you are doing and
won't bore you with the menu.)

Each of the SETIO commands are described below:

WHAT This command will display all possible logical
to physical device assignments. The device
names will be standard CP/M designations

(continued next page)

One of the most widely used programs provided with the
CP/M-80 operating system has been "STAT". STAT gave us
invaluable information about the free space remaining upon
a disk; it told us how many precious kilobytes of disk space
each file occupied. It allowed us to achieve a measure of
device independence through the implementation of the
IOBYTE, and (in later versions of CP/M), it provided us with
some measure of control over file security.

However, in recent years an increasing number of extended'
directory programs have been released to the public, either
through The CP/M Users Group or through various Remote
CP/M (RCPM) dial up systems. These extended directory
programs not only provide the user with an alphabetically
sorted file listing, they also provide information detailing the
individual file size and the remaining free disk space. This in-
troduction of new (and better) directory programs has re-
duced the role of the STAT program to the smaller tasks of
IOBYTE control and the modification of file attribute flags.

Presented here are two programs which replace the functions
of IOBYTE control and file attribute modification, allowing
STAT to be retired to the CP/M-80 "Hall of Fame". The first
program, titled "SETIO", provides a menu driven, user-
friendly method for examining and modifying the IOBYTE.

The IOBYTE: What and Why

The CP/M IOBYTE, for those who are unfamiliar with it, is a
byte size memory location at hexadecimal address 0003H. (In
non-standard CP/M systems, the IOBYTE can be found at
CPMBASE + 0003H.) The IOBYTE is divided into four
fields of two bits each. Each field defines a logical device',
which may in turn be any one of up to four physical devices.
The four logical devices are termed 1) CON:, 2) RDR:, 3)
PUN:, and 4) LST:. For the user's purposes, the device de-
fined by CON : may be considered to be the one employed for
primary communications with the computer. The device
defined by the RDR: field is a general purpose input-only
device. The PUN: field describes a device used for output
only, and the LST: field controls the selection of the system
printer. Note that these designations are arbitrary, particu-
larly in the case of the RDR: and PUN:. For example, the
RDR: device may actually be the output from a high speed
tape drive or the output from a dedicated data logger. The
primary restriction here is that the RDR: be input only and
the PUN: be output only.

Each field in the IOBYTE is composed of two binary bits,
capable of uniquely identifying four devices. Thus the
IOBYTE provides the capability of mapping up to sixteen
physical devices into four 'logical' device designators.
Assuming the proper subroutines are present in the operating

Lifelines/The Software Magazine, Volume III, Number 6

until changed by the user with the DEFINE
command.

This command displays the current logical to
physical device assignments. Again, the physi-
cal device names will be the s tandard
CP/M-80 ones until changed by the user.

This command actually alters the IOBYTE. In-
voking the SET command calls up a sub-menu
displaying the four logical devices. The user is
requested to select one of the four devices to
change, and when the logical device has been
selected, the possible assignments are dis-
played. The user is then queried as to the
device of choice.

This command allows the user to alter the
names given to the physical devices. The pro-
gram will allow the user to assign alpha-
numeric names of up to 24 characters to each
physical device. Whenever a device has been
re-defined, the program modifies its internal
tables and writes itself back to the default disk.

Inside The SETIO Program

WHERE

SET

DEFINE

1) Determine the possible field assignments.
2) Determine the current IOBYTE field assignments, and
3) Change the assignment for a particular IOBYTE field.

The possible field assignments are (using CP/M-80 naming
conventions):

CON:
0 - (TTY:), console printer device,
1 - (CRT:), console assigned to the CRT device,
2 - (BAT:), batch mode: input from the RDR: and output

to the CON :
3 - (UC1:), user defined console device.

RDR:
0 - (TTY:), READER is the Teletype device (usually con-

sole),
1 - (RDR:), READER is the high speed tape reader,
2 - (UR1:), user defined input device #1,
3 - (UR2:), user defined input device #2.

PUN:
0 - (TTY:), PUNCH is the Teletype device (usually con-

sole),
1 - (PUN:), PUNCH is the high speed paper punch,
2 - (UP1:), user defined output device #1,
3 - (UP2:), user defined output device #2.

LST:
0 - (TTY:), LIST output is the TTY: device (usually con-

sole),
1 - (CRT:), LIST output is sent to the CRT device,
2 - (LPT:), LIST output is sent to the Line Printer,
3 - (ULI:), user defined list device.

The STAT command to view these possible device assign-
ments is:

A>STAT VAL:

At any one time, of the four possible devices allowed per
field, only one may be assigned. To determine which one is
currently assigned, the STAT command:

A > STAT DEV:

will display the current logical to physical device assign-
ments.

To re-assign a logical device to another physical device, the
general STAT command:

A > STAT <ldev> = <pdev>

is used, where <ldev> is one of the logical devices CON:,
RDR:, PUN:, or LST: and <pdev> is one of the physical
device names in the physical device table. Note that the colon
(:) is part of the device name and must be present.

The SETIO Program And The IOBYTE

Now we finally come to the IOBYTE and the SETIO pro-
gram. I don't know about you, but I find the names Digital
Research assigned to their physical devices to be somewhat

Now let's take a look at the SETIO program and how it
works. Please refer to the program listing during the follow-
ing discussion.

The first task is to define some useful program constants,
shown in the section titled Program Equates'. These equates
are part of a standard library file which I have developed.
Following the equates section is the program proper. Each of
the major program sections are outlined in the following
pages.

SETIO Program entry point. This is the main program
loop. After initializing various memory loca-
tions through a call to the subroutine "INIT",
the program will loop through the two subrou-
tines "COMMAND" and "EXECUTE" until
the user terminates program execution.

COMMAND This is the command interpreter subroutine. A
check is first made to determine if a program
command was entered upon the CP/M-80
command line. If it is determined that a com-
mand was entered, the COMMAND routine
converts the input line to uppercase and vec-
tors to the lookup routine. If no command was
present upon the input line, the COMMAND
routine prepares an input buffer and awaits a
command from the console. Upon receipt of
an input line from the console, the COM-
MAND routine transfers control to the lookup
routine.

STAT and the IOBYTE

Now that we know what the IOBYTE is, let's look at how
STAT views it. STAT provides three functions relating to the
IOBYTE.

Lifelines/The Software Magazine, November 198224

antique. I don't believe there are too many people who are
still using Teletypes for system consoles. In many cases the
CP/M device names have very little relationship to the actual
physical device accessed by that particular IOBYTE field.

mechanism to determine the memory ad-
dresses of each of the physical device name
strings. The address of each name string is then
passed to the string printing routine, which
displays the string to the console. On my
system the WHAT command would display
the following:

A>SETIO WHAT

CONSOLE may be assigned to the follow-
ing:
1 Zenith Z-19 CRT
2 Diablo 1640
3 NULL
4 NULL
READER may be assigned to the following:
1 TTY: x
2 9 Track Tape Unit
3 IMSAI Comm Link
4 NULL
PUNCH may be assigned to the following:
1 TTY:
2 9 Track Tape Unit
3 IMSAI Comm Link
4 NULL
LIST May be assigned to the following:
1 Diablo 1640
2 GE 1200 Terminet
3 Centronics 353
4 NULL

The DEFINE subroutine provides the user with
a method of altering the names for each of the
16 physical devices. When control passes to
the DEFINE routine, a subsidiary menu is
displayed:

Enter number of logical device:
1. CONSOLE
2. READER
3. PUNCH
4. LIST

The program expects an ASCII digit between 1
and 4 which it uses to index into the address
table of the physical device name addresses. A
section of the routine checks the input for
validity and refuses to accept input other than
the ASCII digits or "4". When the
user selects the logical device to define, the
DEFINE routine will display the following (in
the case of the CONSOLE):

CONSOLE Current assignments are:
Zenith Z-19 CRT Change to >

Each of the four physical devices is displayed
in turn, and the user is given the option of
changing the device name. If the user does not
wish to change the device name, an immediate
RETURN will advance to the next device
without altering the current name for that
device. The new device name is examined for a
length greater than 24 characters and if it ex-

(continued next page)

This is the command lookup routine. It uses
the contents of the command buffer and at-
tempts to match the input line to a command
stored in the command table. The command
table is formatted as the command name, in
uppercase characters, followed by a byte of
zero, followed by the address of the command
subroutine. The last command in the table is
followed by a byte of OFFH. If no match to the
input line is found, the LOOK routine returns
to the MAIN program loop with an error con-
dition.

This is where the actual work gets done. After
the LOOK routine has found the proper com-
mand in the command table, the EXECUTE
routine extracts the routine address from the
table, places a return address upon the pro-
gram stack, and vectors to the proper routine.

This routine is entered when the user indicates
that he or she wishes to end the program. The
FINPROG routine checks to see if the user
altered any device definitions. If a definition
has been changed, then the modified program
has to be written to the disk. The FINPROG
routine first checks with the user concerning
the advisability of performing this write, and if
the user is in agreement, writes the program to
a file named "SETIO.$$$". After writing the
entire program, the old copy of SETIO.COM
is erased and the new copy is renamed. If the
user indicates that the modified program
should not be written, the routine performs a
warm boot return to CP/M.

LOOK

EXECUTE

FINPROG

DEFINE

This is the routine which performs the WHERE
command. The WHERE routine uses the
CP/M BDOS function call 7 to retrieve the
current contents of the IOBYTE. The IOBYTE
is dissected by the subroutine labeled FIELD to
find the memory address of the proper device
name assigned to the field and the device name
string is then sent to the console. Each of the
four fields is treated in a similar manner. In my
system the WHERE command would produce
the following output:

A>SETIO WHERE

WHERE

Console is currently assigned to > Zenith
Z-19 CRT
Reader is currently assigned to > TTY:
Punch is currently assigned to > TTY:
List is currently assigned to > Diablo 1640

WHAT This routine displays to the console the possi-
ble logical to physical device assignments. The
WHAT routine uses an indirect lookup table

Lifelines/The Software Magazine, Volume III, Number 6

ceeds this length, the user is requested for a
new name of shorter length. After all device
names have been reviewed, the DEFINE
routine sets a flag indicating that the SETIO
program must be re-written to disk in order to
store the updated table information per-
manently.

SETIBYTE This is the subroutine which actually alters the
IOBYTE in response to the user's commands.
The SETIBYTE routine also displays the sub-
sidiary menu of logical devices and awaits user
input of an ASCII digit from 1 to 4. When the
user has selected the logical device to alter, the
SETIBYTE routine displays the following
(again in the case of the CONSOLE):

A > SETIO SET

CONSOLE Current assignments are:
1 Zenith Z-19 CRT
2 Diablo 1640
3 NULL
4 NULL

Enter the number of the new I/O device:

The routine expects an ASCII digit from 1 to 4
in response to the entry prompt. After deter-
mining that the input is a valid digit, the
SETIBYTE vectors to one of four routines
(SETILST, SETICON, SETIPUN, SETIRDR);
this isolates the proper IOBYTE field, clears
the old setting, and places the new bit pattern
in the field. Then the CP/M BDOS function 8
is used to set the new IOBYTE in memory.

INIT This is the last major subroutine. This routine
initializes the various data pointers, clears or
sets flags, and checks the CP/M command line
buffer for a command tail. If it detects a com-
mand tail it sets a flag byte. If this flag is set,
then no menu is displayed and the command
tail is used as the input line to the command in-
terpreter. After execution of the command tail,
the program, instead of interactively accepting
commands, will re-boot to CP/M. This allows
users who are familiar with the program to by-
pass the menus and explanations and just per-
form the task at hand. (There's nothing worse
than reading things you already know and
have seen a dozen times before.) If the com-
mand tail flag is not set, then the INIT routine
displays the selection menu and enters the in-
teractive program loop.

Summary

$DIR/$SYS and $R/W/$R/O, plus the "Archive" flag imple-
mented by MP/M II and adapted to CP/M by Kelly Smith
and his "ARCHIVE" program.

I am sure that there are programmers who can see ways to im-
prove upon the program, and I certainly welcome your in-
put. This program has been in use both at my office and in my
home system, and I think I have all the bugs worked out. If
you find a major (or minor) bug that I have missed, please
drop me a line.

TITLE 'SETIO SETS THE CP/M IOBYTE'
O=zero 0=le t te r 0
; WRITTEN BY: Thomas N. Hi l l
; Alaska Micro Systems
; 200 Oklahoma S t .
; Anchorage, Alaska 99504
; (907) 337 -1984 (9 AM - 5 PM, AST)
; 0=ze ro , 0=0 le t te r

;Modif icat ion and Update L i s t :

; 06/20/82 Version 1 .0 (TNH)

; system equates

CPM EQU
BDOS EQU
FCB1 EQU
FCB2 EQU
CBUF EQU
TPA EQU

0
CPM+5H ; bdos entry point
CPM+5CH ; f i r s t F i l e Control Block
CPM+6CH ; second FCB
CPM+80H ; command buffer
CPM+0100H

; Non-disk 1 /0 functions

EQU
EQU
EQU

CONIN
CONOUT
LSTOUT
PRTBUF EQU
RDBUF EQU
CONSTAT EQU
GETIOB EQU
SETIOB EQU
VERS EQU

1 ; console input
2 ; console output
5 ; l i s t device output
9 ; send a string to console
10 ; ge t a string from console
11 ; console s ta tus
7 ; ge t iobyte
8 ; se t iobyte
12 ; return CP/M-MP/M version #

; Disk 1 /0 functions

SELDSK EQU 14 ; se lec t d isk
OPENF EQU 15 ; open f i l e
CLOSEF EQU 16 ; c lose f i l e
DELETF EQU 19 ; de le te f i l e
RENAME EQU 23 ; rename f i l e
READF EQU 20 ; read record

RITEF EQU 21 ; writer record
MAKEF EQU 22 ; create f i l e
SETDMA EQU 26 ; s e t d i sk DMA address
S1ZEF EQU 35 ; compute f i l e s ize

; Those functions needing a byte argument wi l l expect that byte
; t o be i n the E reg is te r . Address arguments are passed in the
; DE regis ter . Return codes are passed in the ACC. In genera l .
; a return o f 0 indicates success , while a OFFH indicates f a i lu re .

; character equates

CR EQU
LF EQU
ESC EQU
EOF EQU
BELL EQU
BS EQU
TAB EQU

ALSE EQU
TRUE EQU

ODH ; carriage return
0AH ; l ine feed
1BH ; escape code
1AH ; end-of - f i l e , control-z
oyh ; terminal be l l
08H ; backspace
09H ; tab cnar

OOH
OFFH

ORG TPA

; main program loop

SETIO: CALL INIT
MAIN: CALL

JNZ
CALL
LDA
ORA
JNZ
JMP

COMMAND
PCERR
EXECUTE
CFLAG
A
FINPROG
MAIN

PCERR: LXI
CALL
LXI
CALL
JMP

D.CERMSG
PSTRING
D.MENU
PSTRING
MAIN

; ini t ia l ize things
; get the input command
; print command error
; execute the command
; command from CP/M
; input buffer?
; ye s , return to CP/M
; no , do i t again.

; subroutines begin he re .

; here i s the command interpreter
; i t examines the contents o f the buffer a t 80H and i f there i s
; a command string from the CP/M command l i ne , i t returns t o the
; main program for execution, else i t requests the command from
; the use r .

COMMAND:
LDA CFLAG ; was a command on the input line?
ORA A
JZ COMMO ; nope .
LXI H,CBUF
LXI D ,CBUF+1 ; must absorb extra space on l ine

Well, there it is. I have described a program designed to
replace the IOBYTE handling tasks of the standard CP/M-80
program STAT with a user-friendly, menu driven routine. In
another article I will describe a program designed to replace
the STAT methods of altering the two file attribute flags

Lifelines/The Software Magazine, November 1982

MOV B,A
INX H
INX D
LDAX D
CALL UCASE
MOV M,A
DCR B
JNZ LP1
LDA CBUF
DCR A
STA CBUF
JMP C0MM1

BDOS
A
PRERR ; d isk er ror , cannot save new names
H.SETIO
B, (IBUF-SET1O)/128 ; sectors t o save
B ; plus one
B
h

C, SETDMA
BDOS
D, PFCB
C. WRITEF ; wri te a sector
BDOS
0 ; error?
PRERR
H
D, 8OH
D
B
C
SAVE1 ; do some more
D,PFCB
C. CLOSEF
BDOS ; close i t
A
PRERR
D, OLDFCB
C. DELETF ; erase old f i le name
BDOS
D, RENFCB
C.RENAME
BDOS ; rename the new f i le
CPM ; finished

; convert t o upper case CALL
INR
JZ
LXI
LXI
INX
PUSH
PUSH
XCHG
MVI
CALL
LXI
MVI
CALL
CPI
JNZ
POP
LXI
DAD
POP
DCR
JNZ
LXI
MVI
CALL
INR
JZ
LXI
MVI
CALL
LXI
MVI
CALL
JMP

LP1:

SAVE1:

; ad jus t count

; for lost space

; no command on i npu t , mus t get one .

CONMO: LXI
CALL

D, PROMPT
PSTRING

LXI D, IBUF ; use internal command
MVI C.RDBUF ; buffer
CALL BDOS ; get the command
CALL CRLF
LXI H, IBUF+1 ; prepare to move command str ing
MOV A,M ; command length
ORA A ; anything there?
JZ F INPROG ; f in ish program

C0MM2: LXI D,CBUF
INR A
MOV B,A ; put length + 1 i n B and

C0MM3: MOV A.M ; use for move count
CALL UCASE ; CONVERT TO UPPERCASE
STAX D
INX H
INX D
DCR B
JNZ C0MM3
XRA A
STAX D ; mark l ine end

PRERR: ORA
JZ
LXI
CALL
JMP
LXI
CALL
JMP

A
PRERR1
D,DSKERRO
PSTRING
CPM
D.DSKERR1
PSTRING
CPM

; have a command, figure out what i t i s .

PRERR 1 :C0MM1:

LOOK:
LOOKO:

LXI
MOV
INX
LXI
PUSH
LDAX
ORA
JZ
CPI
JZ
CMP
JNZ
INX
INX
JMP

NEXTCOM:
INX
LDAX
ORA
JNZ
INX
INX
INX
POP

FOUND: Pur
RET

h ,CBUF
B,M ; get length for use
H
D,CTABLE ; poin t t o command t ab le
H ; save command pointer
D
A ; zero byte from t ab le?
FOUND
THUE ; e l s e i s end?
COMERR ; command error
M
NEXTCOM ; can ' t be th i s one ,
h ; go t o next
D
LOOKO ; else check next char

D
D
A
NEXTCOM
D
D
D
H
LOOK
H

; here are the various command rout ines .

; th i s command displays the current IOBYTE device assignments.
; the initial program uses the standard CP/M device names, but
; the user has the option o f using h is own names, thru the
; "DEFINE” command.

WHERE: MVI
CALL
STA
LXI
CALL
LDA
MVI
LXI
CALL
CALL
CALL
LXI
CALL
LDA
MVI
LXI
CALL
CALL
CALL
LXI
CALL
LDA
MVI
LXI
CALL
CALL
CALL
LXI
CALL
LDA
MVI
LXI
CALL
CALL
CALL
RET

C. GET1OB
BDOS ; current IOBYTE set t ing
IOBYTE ; save i t
D, CONSOLE ; t e l l about console field
PSTRING
IOBYTE
B,O3H ; console field mask
h,CNAMES ; console names
FIELD ; find the proper name string
PSTRING ; print the name
CRLF
D. READER
PSTRING
IOBYTE
B,OCH ; reader f ield mask
H.RNAMES ; reader names
FIELD
PSTRING
CRLF
D, PUNCH
PSTRING
IOBYTE ; same for punch
B,30H
H,PNAMES ; punch names
FIELD
PSTRING
CRLF
D,LIST
PSTRING
IOBYTE ; and the l i s t field
B,0C0H
H. LNAMES
FIELD
PSTRING
CRLF

; return to MAIN

; advance to next command
; i n table
; f i r s t byte o f command address
; second byte
; f i r s t o f next command
; re-point t o command buffer s tar t
; t ry next command
; clean stack

COMERR: POP H ; clean off stack
XRA A
STA CBUF ; set command length to zero
STA CFLAG
INR
RET

A ; reset zero flag

; here i s the EXECUTE rou t ine . I t recovers the command address
; from the command table and branches to i t , placing a return
; address on the stack f i r s t .

EXECUTE:
INX
XCHG

D ; pas t end-of-command byte

MOV E,M
INX H
MOV D,M ; command address t o DE
LXI
PUSH
XCHG

h, FINEXC
H

; proper return address

PCHL
FINEXC: RET

; do the command
; this routine displays the possible logical
; t o physical device assignments.

WHAT: LXI
CALL
LXI
CALL
LXI
CALL
LXI
CALL
LXI
CALL
LXI
CALL
LXI
CALL
LXI

DEVPRNT: LXI
DVPTO: PUSH
DVPT1: MOV

MOV
INX
PUSH
PUSH
MOV
MVI
CALL
MVI
MVI
CALL
POP
CALL
CALL

D.CONMSG1
PSTRING ; console first
H.CNAMES
DEVPRNT ; print the device l is t
D.RDRMSG1
PSTRING
H.RNAMES
DEVPRNT
D.PNCMSG1
PSTRING
H.PNAMES
DEVPRNT ; . . . and the punch l is t
D. LSIMSG1
PSTRING
H,LNAMES ; and finally the l is t l ist
B, O431H ; B = device count , C = ASCII number
B
E. M
H
D, M ; pick up string address
H
H ; save pointer

E, C
C. CONOUT
BDOS
E / '
C.CONOUT
BDOS
D
PSTRING ; print the console assignment
CRLF

(continued next page)

; here i s the program f in i sh . I f no definitions were a l tered,
; warm boot t o CP/M. I f de f in i t i on (s) were a l t e red , then save
; whole program back to d i sk and erase old vers ion.

FINPROG:LDA ALTFLAG
ORA A
JZ CPM

; did we change a definit ion?

; i f a def ini t ion has been changed, then we have to re-write
; the program to disk in order t o save the altered names.

LXI
CALL
MVI
CALL
PUSH
CALL
POP
AN I
CPI
JZ
CPI
JZ
JMP
LXI
MVI
CALL
INR
JZ
LXI
MVI

D.SAVEMSG
PSTRING
C, CON IN
BDOS
PSW
CRLF
PSW
5FH

N
CPM
MAIN
D,PFCB
C, MA KEF
BDOS
A
PRERR
D,PFCB
C,OPENF

; check a bout saving new defini t ions

; upper case

; ye s , save i t .

; nope , ignore changes
; else continue with program

FIN1:

; open the output fi le

Lifelines/The Software Magazine, Volume III, Number 6 27

POP H
POP B
INK C
DCR B ; done yet?
JNZ DVPTO
RET

; here i s the DEFINE routine. I t allows the user t o define
; his own names for each o f the physical devices . A limit o i
; 24 chars i s set on the length o f the input string.

D.DEFWHAT
PSTRING
C.CONIN
BDOS
PSW
CRLF
PSW
NUMChK
DEFINE
DEFGET
D
D, CURMSG
PSTRING
D
B, 4
h,CNAMES
D
E, M
H
D,M
H
B
H
D
PSTRING
D.CHANGE
PSTRING
D,1BUF
C. RDBUF
BDOS
CRLF
IBUF+1
A
DEFG4
24
DEFG1
D.TOOBIG
PSTRING
CRLF
DEFGO
H, lBUF+2
D
B,A
A,M
D
H
D
B
DEFG?
A, .

D

DEFG4: POP
POP
POP
DCR
JNZ
MVI
STA
RET

D
H
B
B
DEFG
A. TRUE
ALTFLAG

; and POPs
; recover string address table
; pointer and device count

; do another one

; t e l l program definitions
; were altered

NUMCHK: CPI
JC
CPI
JNC

z r
BADNUM
'5'
BADNUM

ORA
RET

A ; reset zero

BADNUM: XRA
RET

A ; se t zero

DEFINE: LXI
CALL
MVI
CALL
PUSH
CALL
POP
CALL
JZ
CALL
PUSH
LXI
CALL
POP
MVI
LXI
DAD

DEFG: MOV
INX
MOV
INX
PUSH
PUSH
PUSH
CALL

DEFGO: LXI
CALL
LXI
MVI
CALL
CALL
LDA
ORA
JZ
CPI
JC
LXI
CALL
CALL
JMP

DEFG1: LXI
POP
MOV

DEFG2: MOV
STAX
INX
INX
DCR
JNZ

DEFG3: MVI
STAX
PUSH

; ask which logical
; device to change
; accept a numeric
; ent ry , 1 -4 .

; check for valid digit
; not r ight , t ry again. ; here i s the set routine. I t will display the currently stored

; selections for the logical device selected and alter the IOBYTE
; to reflect the user s choice .

SETIBITE:
LXI D.DEFWHAT
CALL PSTRING
MVI C .CONIN
CALL BDOS
PUSH PSW
CALL CRLF
POP PSW
CALL NUMCHK
SETIBYTE ; invalid answer
STA LDEVNUM ; save the logical device nunber
CALL DEFGET ; get the proper logical device printed
LXI H,CNAMES
DAD D ; point t o phys . device add . table
PUSH H ; save i t
LXI D.CURMSG
CALL PSTRING
POP
MVI
CALL
CALL
LXI
CALL
MVI
CALL
PUSH
CALL
POP
CALL
JZ
PUSH
MVI
CALL
MOV
POP
SU1
DCR

H

D&VPRNT ;
CRLF
D.SELASK;
PSTRING
C.CONIN
BDOS ;
PSW
CRLF
PSW
NUMChK
SETI1
PSW
C.GETIOB
BDOS ;
C.A

A
MOV B,A ; phys . device number , .
LDA LDEVNUM ; recover logical device (cont. Oil page 57)

; "currently i s : "

; point t o start o f address table
; now pointing to logical
; device l i s t
; get address o f current
; phy . device name

JZ
SETIO:; save pointer

; save string address again
; print device name

; "change to->"

get new name
check string length print device names

ask about selection

get an answer

get current IOBYTE

SETH:
; too big?
; nope, so OK.

move string to proper place
string address
bytes t o move

; move the string

; mark the end
; must balance PUSHes

Introducing the
dBASE II HELPLINE

The new dBASE II HELPLINE is designed to put dBASE II and QUICKCODE Users in contact
with their fellow users. This new national network will enable dBASE II users to:

— Offer and receive advice and consultation on dBASE II programming
— Exchange and standardize specific applications
— Exchange information on bug reports.
— Create cooperation on application developments
— AND MUCH MORE!

HERE’S HOW SIMPLY IT WORKS:
Send us your name, address, telephone, length of time using dBASE II, and type of
computer configuration. We will collate, using dBASE II, of course, and make available
to you a listing of other users in your region at no charge. Then it’s up to you to contact
them for advice, information or just to exchange ideas.

To become a member, please send the above information to:

DIRECTOR OF PRODUCT DEVELOPMENT
STANDARD SOFTWARE CORPORATION
DEPARTMENT A20
10 MAZZEO DRIVE
RANDOLPH, MA 02368

This is a free service brought to you by Standard Software Corporation in cooperation with four
of the founding members of the Boston dBASE II Users Group (established 9/81).

David Britton Dwayne Baye Joseph Gannon Glenn Meader
dBASE II IS A TRADEMARK OF ASHTON-TATE

Lifelines /The Software Magazine, November 198228

“.Lattice C compiler is the best
compiler all around that I have

ever seen outside of
the UNIX environment.

The quality and completeness...
is truly awesome.”

Jason T. Linhart (Mark of The Unicorn, Author of Mince)

In praising Lattice C, Jason Linhart
has a lot of company. It is considered by
experienced users to be the definitive
compiler. This 8086/8088 C Compiler sup-
ports the full C language. It is not a subset.
Lattice C takes advantage of the features
provided by the 16-bit 8086 instruction set
and is especially suitable for applications
where clear structure is crucial.

Applications of considerable complex-
ity and power can be developed— text pro-
cessing, file manipulation, data model-
ing, system maintenance, and much more.

Lattice C accepts source code files
written in C and produces relocatable
machine code in Intel’s™ 8086 object
module format, which can be linked
together into larger programs. The Lattice
C library defines a comprehensive set of
I/O subroutines that implement UNIX™-
compatible standard functions.

Lattice C is ideal for anyone who
wants to work with or learn C—for experi-
enced programmers who wish to enjoy
the clarity and speed of C in their appli-
cations; for anyone who wants the pro-
gramming capabilities of a higher level
language without sacrificing program
efficiency. In fact, all of the program

examples listed in The C Programming
Language by Kemighan and Ritchie can
be compiled by Lattice C.

Lattice C implements the C language
on all Intel 8086/8088 code-compatible
microcomputers, including the IBM™ PC
under DOS, MS™-DOS, and SB-86™.

For more information about Lattice C
and other programs available for the IBM
PC and other 8086/8088 computers, just
fill out the coupon or give us a call at
(212)860-0300.

New York, New York 10028
TWX: 710-581-2524(LBSOFT NYK)
Telex: 640693 (LBSOFT NYK)

Lattice C 16-bit software 8-bit software

Name Title

Company Bus. Phone

State

Copyright© 1982, by Lifeboat Associates. SB-86, TM Lifeboat Associates. MS, Microsoft, TM Microsoft, Inc.
UNIX, TM Bell Laboratories. Intel, TM Intel Corp. CP/M-86TM Digital Research, Inc. IBM,TM International Business Machines, Inc.

Feature

An Introduction To
Access Manager

Bruce H. Hunter
please bear in mind that the MP/M II
restrictions are much larger than the
constraints imposed by CP/M-80 .
Maximum data file length is also 8 meg-
abytes. Open files are 20 data and 10 in-
dex maximum. These constraints seem
large by ancient (last year's) standards,
but with $1300 Winchesters and ex-
tended addressing nearly taken for
granted, they are more than realistic.

Access Manager owes its origins to
B-tree structures, which came into use
during in the late 60's. Developed more
or less simultaneously at Sperry Uni-
vac, Case Western Reserve University,
Control Data, Stanford, and Boeing
Scientific Research Labs, the meaning
of the name is lost in obscurity. It has
been claimed that the 'B' stands for
balanced, broad, bushy and even Boe-
ing. The B-tree structure was quick to
gain acceptance, and became the heart
of many mainframe data systems, in-
cluding IBM's highly touted VSAM
system. Going even further back into
computer prehistory, its roots stem
most certainly from the binary tree.
(Editor's Note: Donald Knuth in The
Art of Computer Programming, Vol-
ume 3, ascribes the "B" to Bayer, who
first described the structure in 1972.)

Binary Trees

Introduction as a favor that they ship me the package
on day one of its introduction to the
public. Digital didn't let me down.
They shipped me Serial No. 22 in the
next mail. (Thank God for credit
cards!)

The first step was reading the manual.
Digital's manuals. . . . well, no one has
ever accused them of hiring writers.
This manual is no exception, but I must
admit, it is better than most. There are
a lot of improvements over BT-80's
manual - like an index in the back - and
there are almost a couple of pictures:
flowcharts. Still, like all manuals, it is
written in "manualese". The only way
to get into it is to put on your thigh-
length manual reading boots, and wade
right in.

Access Manager is a keyed file and file
access package intended to operate
with Digital's CB-80, Pascal/MT+, and
PL/1-80 programming languages. Like
BT-80, it uses the B-tree file organiza-
tion, but is a lot neater. Intended for use
with both CP/M and MP/M, Access
Manager has both record and file lock-
ing (a must with multi-user systems).
The data file organization is sequential
by nature. Records are added to the end
of the data file, and no reshuffling takes
place except to utilize the space left by
deleted records. Hogan taught me a
good axiom: if you want to hurt data,
move it. This form of writing avoids
that problem.

Digital has really done this one right.
Record lengths are whatever you want
them to be, as long as they are at least
four bytes long. (No more multiples of
128.) The index files are restricted to
multiples of 128, but remember that the
index files take up a lot less room than
the data files, so little is lost and a great
deal is to be gained in potential stan-
dardization. Now, you can only have
124 key (index) values per index file.
Personally, I try to keep them down to
two or three. The maximum index file
size is 8 megabytes. I hope these
"restrictions" won't discourage you!

I'm going to restrict most of my com-
mentary to single user systems, so

By way of introduction, I have a small
software operation in the L.A. basin
where we write business programs.
Our programming is dedicated to the
CP/M-80 operating system. The com-
pany's latest undertaking is the crea-
tion of a data base /general accounting
system. A little less than a year ago,
when the program first started to de-
velop, our initial thought was to use
PL/I-80's keyed field ability to control
the data base - not a bad idea if one is
willing to dedicate a few years to the
development of sort and search tech-
niques. Soon after, I found myself
writing my own software tools for data
structures. It was an education, to say
the very least!

Then I was introduced to Ashton Tate's
dBASE II by Bill Hogan, a close friend,
sys tems ana lys t , consu l t an t , and
CP/M expert "extraordinaire." It is
very easy to get spoiled, and dBASE
spoiled me for other systems. Now, the
trick was to find a data base system that
had some or many of the features of
dBASE and would be accessible from
PL/I or BASIC or any other language I
was familiar with. The choice was easy.
My operating systems and most of my
languages were primarily Digital Re-
search, so why not BT-80? Without a
second thought, I sent off for the utility
and manual . Nothing to it, right?
Wrong!!

BT-80 is a binary tree retrieval system
that, like any binary tree data structure
system, uses pointers prolifically. My
first program had close to three pages
of declarations. There seemed to be
more pointers in that first 180 lines than
in Chapter 5 of Kemighan and Ritchie's
book on "C". Now the trick of a pro-
gramming utility is to make the pro-
gramming task easier, and it seemed we
hadn't gotten there yet.

Just as I settled down to write the
world's longest segmented program on
data retrieval, Digital announced Ac-
cess Manager. I called Digital and asked

The binary tree utilizes a data structure
called a node. The node consists of the
information to be stored (which may or
may not be a file key), and a right and
left pointer. The pointers "point" to the
next lower level pair of nodes, the
smaller value to the left, and the greater
value to the right. There is an esoteric
vocabulary associated with binary
trees and the relative levels of the
nodes. Concentrating on one node (any
node), it would be known as the
"father" relative to the two nodes to
which it is pointing on the next level
down. Those two nodes to which the
"father" is pointing are known as the
"sons." (The exclusivity of the male
family members here I can only ascribe
to blatant male chauvinism.)

30 Lifelines /The Software Magazine, November 1982

rithm of descending the tree left-most
at each level and then right across that
level before a left descent again. The
B + Tree presumably can be returned in
order by a simple left to right sequential
read.

"Son Of BT-80"

node of order d will have 2d keys and
2d -I- 1 pointers. (Because of the multi-
ple number of keys, groupings of keys
are referred to as "pages.") The number
of keys in each node (or page) deter-
mines the efficiency of the search. The
more keys per page, the fewer levels to
complete the tree. Page size is a func-
tion of key length and the number of
sectors allocated to each page. A great
deal of housekeeping is required by the
system to keep the tree balanced. The
writer of a B-tree system must balance
the time spent in housekeeping relative
to the time saved in the search.

BT-80 and B+Tree

Back in 1980 or so, Digital brought out
its BT-80, a B-Tree record retrieval
system. Aimed at PL/I-80 program-
mers, it utilized the B + Tree system.
The B+Tree is yet another level of
sophistication in B-Tree organization.
It organizes the root node and all levels
of nodes, short of the lowest level, to
page the keys located at the bottom of
their structure. The upper nodes or se-
quence nodes split the ranges of nodes
below them. It would be analogous to
the first page of a telephone directory
telling you which page held the loca-
tion of the page which listed the name
(key) that you were looking for.
Sounds a bit complex at first, and it is!
But remember, the trick is to cut down
on the number of tries to complete the
look up, not to make the understanding
of the system simpler. This organiza-
tion very substantially reduces the
height of the tree structure. Using "d" as
half the number of keys per page and
"n" as the number of keys, the height of
a tree is more or less:

Tree height < = 1 + log d ((N + l)/2)

(The more or less is dependent on the
fullness of the nodes, another subject
altogether. But before getting side-
tracked on this one and maybe even
B*-Trees well get back to B+ Trees.)

Using the above formula, a half million
keys could be searched in no more than
four accesses. That is fast!! Remember
the binary tree, with its 18 accesses per
half million pieces of information! To
add to the wonder of it all, the sequence
nodes are maintained in left and right
ascending order. The final search for
the key is done sequentially. Compare
that to the binary tree, which must be
traversed in "preorder," a tricky algo-

Looking at that one symbolic node
again, all nodes preceding that one in
upper levels are known as 'ancestors, "
while all those below that node (except
for the sons) are "descendants." The
topmost node is called the "root" node.
Terminal nodes (without sons) are
known as leaves.

Without any housekeeping algorithms,
binary trees soon become unbalanced,
one side becoming longer or going into
more levels than the other. Now, the
fewer number of accesses it takes to
retrieve the data you want, the more ef-
ficient the tree. In an unbalanced tree,
efficiency is soon lost, so intricate
housekeeping routines are required to
keep the tree in order and balanced. To
determine the maximum number of ac-
cesses it will take to retrieve a piece of
information, the height of the tree is the
key. The height of a balanced tree is
related to the log of the number of
nodes in the tree:

Height < = log d ((N + l)/2)

For example, the height of a tree of a
half million values is 18; that is to say, it
would take no more than 18 accesses to
retrieve a value. When the tree is to be
searched for a value, the topmost node
(or root) is examined and compared
with the search value. Whether the ex-
amined node is greater than or less than
the search value will determine the next
search path. "Less than" will cause the
search to go to the left pointer, and
"more than" will branch to the right
one, all the way down the tree, until
either the value wanted is found or un-
til a null pointer is encountered. If a
null pointer is encountered, the search
is terminated. You have to try to write a
binary tree to appreciate the complex-
ity of the task. If you think a simple
goto will get you into trouble, you have
never pointed a pointer! Pointers point
at direct memory locations. I don't
want to discourage you, but you can
blow up your system in just a line or
two of code!

B-Trees

I talked to the people at Digital about
their new offspring. As I suspected, Ac-
cess Manager is indeed "son of BT-80."
They are justifiably proud of their new-
est accomplishment. Combining B-tree
hierarchy and indexed sequential ac-
cess method (ISAM), they have
brought the sophistication of the
VSAM file system to the micro. My
friend, Hogan, refers to PL/I as a
"behemoth." It is probably the largest
language in the history of computer
languages (although ADA may surpass
it in time). PL/I-80 is subset "G" of
PL/I, and I find it a wondrous irony
that PL/I-80 does not support ISAM or
VSAM files like the full set; but with
Access Manager used in conjunction,
PL/I-80 now has the power of its main-
frame brother.

Program Notes

A look at the listing at the end of the ar-
ticle will give a fair idea of what is in-
volved in programming with AM-80.
The data structure at the top of the code
serves both as a classic PL/I structure
and as a data buffer. A pointer is pre-
pared to point to the buffer later in the
code. The precompiler command, % in-
clude am80extr.pli, inserts the declara-
tions of the AM-80 functions and
parameters, thoughtfully saving the
programmer a quarter page of typing.
After the declarations, the parameters
of the system are defined. The number
of buffers is set at three, the system
minimum. Two index files will be used,
having 4 sectors of 1024 bytes each.
Digital recommends standardizing this
number to make AM-80 programs ac-
cessible by all programmers using
AM-80. I heartily join them in this
recommendation. One data file will be
used, and error trapping through the
program (rather than directly) has been
chosen. No file or record locking will
be used in this single user program, and
time out is not necessary - since it is
used only in multi-user environments.

The system is initialized with the "in-
(continued next page)

31

As you will recall, the binary tree node
consists of information (which may or
may not be a file key) and two pointers.
The B-tree has the distinction of using a
node with multiple keys. While the bi-
nary tree node has one key and two
pointers, the B-tree has one more
pointer than it has keys. Therefore, a
Lifelines/The Software Magazine, Volume III, Number 6

tusr" and ' se tup" routines. Intusr
assigns the program identification,
another goodie ignored by the single
user system. Setup does the actual in-
itialization as well as setting up the buf-
fer area. To get even with the multi-
user parameters that don't get used,
setup is ignored by multi-user systems.
The parameters passed to intusr are the
program i.d., error request and time
out function. In this single user pro-
gram only the error trapping request is
significant, but all must be used. Setup
needs the numbers of buffers, index
files, index sectors, and data files.

The data file(s) is opened with "open-
dat." Opendat, as the name implies,
opens the data file and assigns a data
file number if you request it. There is
another function, "oprdat," which will
open a blown file and rebuild it. Handy
for people who have a compulsion to
cold boot in the middle of a disk write.
Parameters passed to the routine are
the file number, the lock request, file
name, and record length. The index
files are opened with the "opnidx"
routine. Parameters are file number re-
quest (-1), the index file name, the max-
imum key length, the key type, alpha
or numeric, and the choice of a dupli-
cate key suffix. If chosen, the duplicate
key suffix will allow the use of up to
65535 duplicate keys. If not chosen, a
duplicate key will simply not be written
to the index file.

Writing the data and indices is nearly as
simple. The next available record num-
ber is required and it is returned by the
function "newrec" which takes as pa-
rameters the file number and lock re-
quest. Newrec, along with the file num-
ber and data buffer pointer, is all that's
necessary required to write the data to
disk using "wrtdat." To put the key rec-
ords to disk requires the "addkey" rou-
tine: addkey writes the new key value
and its record number to the index file.

Root

Father

height

Son

Descendants

BINARY TREE
unbalanced

log2 (keys)

Key1 Key 2 Key

Key KeyKeyKey

h = logd jw
2

Partial B-Tree

RANDOM
SEARCH

I

B-TREE
INDEXROAD

MAP

Sequential Search

DATA
h = 1 + logd

n + 1

2

B+ TREE

INFO

PTR PTR CHTINIT1.PLI #»*»**»*»»*/
CHART INITILISATION
first attempt at #*#*#*#«*«»/
Access Manager »»»#*»*»**#/
Sept 6, 1982 **«**«##*#*/

Bruce H Hunter/ HUNTER STRUCTURED SOFTWARE
Copyright(C) 1982 »#»*»##**«#/

<<*>> #**<#***##*/
/»*****» A trivial program to initilise Chart of Accounts ***********/

/«## ***/
/*** linkage note: link chtinitl ,am80pl/I.IRL[S,A],AM80BUF.IRL ***/

/ft**********##******##**###*******#*#*##********************#****#*#****#/

/#»«»###
/«*»«#*«
/**»**#*
/«**«»#«
/«»*»*»*
/»»#**##
/»*»#**#

BINARY TREE NODE

Lifelines/The Software Magazine, November 198232

Its parameters are the index file number
or key number, data file number, data
lock request, the key value, and the
data record number. Associated func-
tions are "delkey" to delete keys and
data record numbers from index file
records and updptr, to change the
record number associated with the key.

To flush the data buffers and write the
directory information to disk, the clos-
ing procedure is called. "Clsdat" closes
the data file using only the file number.
Clsdat closes the data file and updates
to disk while "savdat" updates the disk
without closing the file. The index files
are closed by "clsidx", passing it only
the index file; an additional function,
"savidx" saves the information to disk
without closing the file number.

Most routines pass an error code. I
found the error codes straightforward
and easily understood. "Errcod" re-
turns AM-80 error codes. There are
about 70 error codes or messages, most
of which are quite specific. Nothing as
nebulous as "conversion," my old
enemy in PL/I.

There are numerous additional rou-
tines such as "nokeys" and "nmnods"
which return the number of keys in an
index file and the number of nodes
respectively. There has been a great
deal of work put into file and record
locking for multi-user applications.
Locking and unlocking functions are
supplied, and a number of lock re-
quests exist. Lock codes can be set to no
lock as the listing has done or shared
record or file locks which allow any
number of users to share data. Exclu-
sive locks can also be set. The use of a
shared lock prevents a single user from
using an exclusive lock.

Digital has supplied a wealth of func-
tions for index key searching. Getkey
looks for an exact match and returns
the corresponding data record number.
What if we don't have an exact target
key? Serkey will look for the first key
which is equal to or greater than the
target key. Neat! Give it a target key of
"0" or "A" and it should start an as-
cending sort. Befkey finds the key that
precedes the target key and aftkey the
following. Frstkey and laskey return
the first and last keys. Prevkey goes to
the key before the key just accessed;
nxtkey, of course, goes to the one after.

(continued next page)

chart:
proc options (main);
del

data_buf_ptr
3
3
3

l_ptr pointer ,
data—buffer ,
act_name
act—no
address,
5
5
5
5
principal

char (32) var,
char (4) ,
char(32)
char (24)
char (2) ,
chart 5) ,
char(24) ;
/* ------

123 byte total */

street
city
state
zip

van,
van,

3

%replace
MAX KEY LEN by 48,
NAME-LEK by 14,
TRUE by '1 'b,
FALSE by 'O'B,
CLEAR zby 1';

include 'am80extr.pli';
del

no lock fixed,
fiTe_name char (NAME LEN) var,
(name index, nbr_inTex, name_key) char(128) var,
(n_bur, n_keys, n_sec, n_data_files, erropt. progid, time out) fixed,
(drn, file_no, recd_len, act_name_len, nbr_len. name_typej fixed,
(nbr_type, name_dup, nbr_dup, act_name_key, ac£_nbrkey; fixed;

n_buf = 3: /* index file buffers (name & nunber) */
n_keys = 2; /* index files */
n_sec =4: /* 1024 byte index file record length */
n_data_files = 1 ;
erropt = 1 ; /* trap user errors */
progid = -1;/* program assigned id number request, ignored

in a single user system •/
time_out = 0;/* background server delay also ignored */
no_lock =0; /* file lock request (no file lock) */

initilize system
progid = intusr(progid, erropt, time_out); /* progid not used in

single user system */if errcodO ~= 0 then
call error(1);

if setup (n_buf. n_keys, n_sec, n_data_files) ~= 0 then
call error (2);

menu:

choice fixed ;
put list (CLEAR);
put skip edit(

MENU*,

*1 open data file and key f i les ' ,
'2 open files and update',
*3 close files & return to menu')
(8 (skip,col(24),a));

retry:
put skip (2) list ("i input choice);
get l ist (choice);
if choice < 1 ! choice > 3 then

goto retry;
goto q(choice; ; /* case */
q(1):call open() ;
goto menu;
q(2):
call open():
call update() ;
goto menu;
q(3):call closeO;
end menu;

open:
proc;
del

reply char (1);
put list (CLEAR);
put skip(4) edit(

Open Index and Data F i le ' ,' it*#***#******#**********')
(2 (skip, col(20), a));/»*/

file. no = -1; /* auto file no assignment */
recd_len =128;
file_name = 'chartdb.dat';
/* open data file (create or update) */

Lifelines/The Software Magazine, Volume III, Number 6

file__.no = opndat (f i le no, no_lock, file_name, recd_len); /* note:
the file_.no is optional in single user systems */

if er rood () ~= 0 then
call e r ro r (3) ;

data_buf__ptr = addr(data__buffer) ; /* set pointer to buffer */
open index files

name index = z 'name.i()x';
nbr_Tndex = nbr. idx ;
act_name_len = 11;
nbr_len = 4;
name type = 0; /*alphanumeric key */
nbrjype = 0;
name__dup = 1; /*add duplicate key suf f ex if necessary */
nbr__dup = 0; /*no duplicate acount number suffex */
act__name_key = opnidx(- 1 , name__index , ac t__name_len , name__type , name dup) ;
act_nbr_key = opnidx(-1, nbr_index, nbr__len, nbr_type, nbrjdupT;
end open;

update :
proc;
del

key__name char(9) var,
(reply, ud_code, ud__code2) fixed;

Digital Research has done its home-
work well. The AM-80 package is
broad and well thought out. It has sub-
routine libraries, interfaces, and sys-
tems processes for PL/I, CB80, and
Pascal/MT+. A shared multiple-user
background server is supplied as well
as a number of multiple-user resident
system processes. Single user programs
will normally only require linking the
appropriate AM-80 library of subrou-
tines and the buffer area. A recreate
utility has also been supplied to re-
create blown, or as DR1 likes to call
them, corrupted', data and index files.
In my opinion, the Access Manager is
the finest accessible data storage and
retrieval system available today for
microcomputers. It is easy to imple-
ment and does the majority of house-
keeping itself, not leaving this chore to
the programmer. Its speed and capacity
should go unrivaled for some time. We
will see if I am still smiling next month
after bringing up the search routines.

References

put list (CLEAR);
put §kip(4) edit (

Update ,
,

'enter EOF to quit)
(4(sk ip , co l (24) , a)) ;

do while (TRUE);
oops :

put skip list ('account name :);
get edit (act name) (a);
if act__name = EOF 1 act__name = eof then

goto menu;
put skip list ('account number :) ;
get list (act nq):
put skip l ist (street :);
get edit (street) (a); z
put skip list (city :);
get edit (c i ty) (a) : zx
put skip list (state :);
get l is t (s t a te) ;
put skip list (zip :);
get list (zip)

put skip list ('principal or contact : ') ;
0 t edit (principal) (a);

put skip (3) list ('*i* i* Verification*'):
put skip (2) list (act name, ' * i ' , zact r no) ;
put skip list (street ' , c i t y , ' , , s t a t e , ' , , z i p) ;
put skip list (principal);
put skip (2) l ist (' enter 1 for corrections :);
get list (rep ly) ;
if reply = 1 then

goto oops;
/* write data to mr. disk */
drn = newrec (file. no, no lock); /*

returns the next availabvle data record number */
if errcodO ~= 0 then

call e r ror(3) ;
if wrtdat(file no, drn, data__buf__ptr) ~= 0 then

call errorT4):
name__key = substr (act name, 1,9)1
/* add key values to key files */
ud__code = addkey (act_name__key , f ile__no ,no_lock ,act_name__key ,drn)
if ud_code = 2 then z z

put skip list(index value ,act_name, all ready in file)
ud code2 = addkey(act__nbr__key,file__no,no__lock,act_nbr_key ,drn) ;
if” ud__code2 = 2 then z

put skip l ist('index value ' ,act_no, all ready in file);
end;/*dowhile*/

end update;
close :

proc;

BT-80 Record Retrieval System Refer-
ence Manual

Digital Research, Inc.
Access Manager Programmers Guide

Same as above
Data Structures and PL/I Program-
ming

Augenstine & Tenenbaum
Fundamentals of Data Structures

Horowitz & Sahni
"The Ubiquitous B-Tree"

Comer |]

Renew
We’re looking forward to hearing
from any of you December subscrib-
ers who haven’t called or written. If
your subscription started with the
December ’81 issue you should have
received a letter and reader survey
from us, urging you to renew. You
can see that Lifelines/The Software
Magazine has given you value this
past year and we’re expecting your
support again. Make your holidays
merrier and send your check right
away. Or get out your VISA or Mas-
terCard and call Lifelines/The Soft-
ware Magazine Subscription Dept,
at (212) 722-1700. The address is:
1651 Third Ave., New York, N.Y.
10028.

if clsdat(file no) ~= 0 then
call error (6);

if clsidx(act_name__key) ~= 0 then
call error (7);

if clsidx(act__nbr_key) ~= 0 then
call error (o);

stop;
end close;

error :
proc (location) ;
del

location fixed;

(a, f (4 j , a, f (3)) ;
stop;
end error;

end chart;
/*that 's all folks*/

at code location location)

Lifelines/The Software Magazine, November 198234

MicroMoneymaker’s Forum
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$ $$ Digital Dollars Department

Charles E. Sherman

Good Ideas In Early Returns From Readers
and

Entrepreneur Of The Month: Edward S. Greenberg
and

A Guaranteed Money Saving Tip With Abject Apology
From Yours Truly

dBASE II). I'm glad to hear that so
many of you rely upon word pro-
cessing, because I just happen to be
scrutinizing all fifteen of the major
CP/M-80 programs now on the
market, including a customized ver-
sion of WordStar, and may have
some interesting tales to tell in future
columns.

Many readers had some ideas for
micromoneymaking, but the descrip-
tions were frequently far too vague or
too abbreviated. This month's entries
in the imagination sweepstakes are:

1. Maintain a political information
database, especially focusing on
campaign contributions. The main
idea is to generate data about politi-
cian's pals, to see who is influencing
whom.

2. Become a broker for programming
services, communicating between
customers and clients via telecom-
munications.

3. Set up journal indexing, abstracting,
and reprint systems for research
professionals. I gather a tailored
data base is intended, if I understand
this one-liner. This same person has
DataStar and says professional in-
dexers are still looking for the ideal
indexing program. I wonder if
they've checked out Documate/
Plus? If you're still out there, let us
know.

4. Customize, install, and train people
to use the off-the-shelf software that
most business users can't make func-
tional for their needs and to their
complete satisfaction.

5. Computerized city map and routing
service. Subscribers could call in
deliveries for the day and receive
back the most efficient routing.

(continued next page)

reliable. Our numbers are still quite
low, which I am confident is due to the
above mentioned time warp and not to
the fact that you are all sitting on your
hands.

And now, may we have the envelope,
please:

1. The early returns of the Micro-
MoneyMaker's Information Sheets
indicate that our responding readers
have been involved with microcom-
puters during a period of one to
seven years, with an average of 3.4
years.

2. Half of the people who responded
are consultants of some kind. It is
fairly typical for a respondent to en-
joy ancillary income, in many cases
derived from the individual's own
programming, via sales and/or
royalties, while a few supplement
with hardware sales or business sup-
port services. The respondents who
aren't consultants are mostly either
salaried people who hope and expect
to become independent consultants
imminently, or who provide services
in support of other businesses or
professions. Those services usually
consist of routine business needs,
such as accounting, mailing, or fil-
ing.

3. Nearly 100 % of the respondents rely
upon word processing software
(mostly WordStar). Just over 62%
use a spreadsheet program (mostly
SuperCalc), and about the same
percentage use a data-base (mostly

The Early Returns

At last! The first information sheets are
rolling in, chock-full of thought-pro-
voking information for us all. In fact,
this month's profiled entrepreneur was
discovered in the first batch. His one-
line description of what he does was
just enough to pique our interest, and
an interview turned up pay-dirt. To tell
the truth, even the interview7 was his
idea. His info sheet came with a letter
making suggestions for the column,
one of which was that we interview our
own readers. This seemed like a good
idea, and it only seemed fair that he be
the guinea-pig. Bingo!

Circumstances cause an obtrusive lag
between the time you post some hot
tid-bit to us and the time you will read
about it in these pages. For this we can
thank our turtle-express mail multi-
plied by three: from you to Lifelines/
The Software Magazine, then to me,
then back to Lifelines. This is com-
pounded by the 30 days between each
issue. So when you send us something
wonderful, please be patient; it will
take two or maybe three months before
we can recycle it. For comparison pur-
poses, Byte Magazine takes about six
months for turnaround. Some wonder-
ful day Lifelines will discover the
Source or some other electronic mail-
box, and we can all begin to live up to
our potential for speedy communica-
tions.

The statistical summaries from the first
responses are suggestive, but not yet

Lifelines/The Software Magazine, Volume III, Number 6

As I said, the descriptions of what you
do, as well as your suggestions for what
could be done, seem to suffer from a
certain verbal stinginess. However,
something is better than nothing, and
even these fragments may stimulate a
hot idea somewhere. I hope more of
you will write to enter the imagination
sweepstakes, or to tell us what you do
for money. When you do write, please
flesh those ideas out with a bit more
detail.

Here's an example of what I mean. One
part-time entrepreneur says "I index
books and journals." Now that's tanta-
lizing, but leaves us with nothing but
unanswered questions. Why don't
authors index their own books? Now I
have heard that a writer is a fool if he
tries to index his own book, and that it
takes objectivity coupled with a special
knack or special training. Is this true?
Why? What is it like to work as an in-
dexer? Does it pay well? Is there much
demand for good indexers?

We would rather you wrote in with
fragmentary information than with
none at all, but we would all prefer
something to get our teeth into, okay?

Profile of the Month

life insurance, with some variables
thrown in to cover various tax ap-
proaches. In the past, salesmen have
had to call on the potential customer,
get the facts, send off to the head office,
and wait a week or two for the figures
to come back. With a micro and Ed's
own little BASIC program, they can get
the figures immediately for some in-
stant show-and-sell. Obviously, this is
a lot more effective. As an irresistible
bonus, the salesmen can also use their
micros to keep track of customer lists,
contacts, write letters, and so on.

Typically, Eddy will show an insurance
sales office the advantages of having a
micro around. Then he offers to set up
the equipment and teach their people
how to use it, and they fall all over
themselves signing up. Most contracts
start with a $2500 retainer, for which he
studies the office and its needs, then
makes recommendations. Then he sells
them the equipment and teaches them
how to use it. All they have to do is sit
back, learn, and pay. And pay. He'll go
in once a week for a while, then taper
off, eventually switching over to ser-
vice by phone. After showing people
how to use the micro and run his basic
program to generate sales "illustra-
tions," Eddy will teach them how to use
Visicalc and WordStar. If they are eager
for still more, they can go into dBASE
II (mostly for customer lists and the
like). Eddy's main research activity is
staying a jump ahead of the customers,
and thinking up new applications to
help them.

Not bad for a 24 year-old high school
drop-out, is it? That's what I like about
the microcomputer world: it is a froth-
ing, wide-open field in which formal
education and credentials mean a lot
less than creative ingenuity and enter-
prise. For the future, Eddy is working
on ways to make himself available to
more clients by setting up a database
which his clients can subscribe to.

Eddy Greenberg believes that there is
room for hundreds like himself in the
insurance industry alone, as there are
over 50,000 salesmen in the country
and the degree of micro penetration is
less than one half of one percent. Then
there are all the other industries which
could benefit from his approach: off
the top, he suggests the garment in-
dustry or real estate. He also thinks
there is a big need for business ap-
praisals and valuations. I suggest pen-

sion plan valuations, which are re-
quired as part of every divorce in
California (150,000 annually) and most
other states. Actually, almost any field
will do, because the potential is totally
untapped. Take any field you used to
be in, or any field you are interested in,
or any field you have contacts in, and
start teaching them some simple micro
applications that will help their pro-
cess; preferably to increase sales.

Eddy thinks the secret to success lies in
keeping things simple and practical. He
says, "The most important advice I can
give prospective consultants is to come
away from sophisticated programming
and intricate applications, and go in for
education. The big need is at the bot-
tom, at the beginning, where the mass
of the population is right now. Show
them how to use micros to make simple
applications work for them."

Guaranteed Money-Saving
Tip After Abject Apology

Well, I made a mistake and I admit it.
I'm sorry. I owe you this apology and I
hope you'll give me another chance.

In the last two columns I've been oiling
around with words of artifice, schem-
ing and conniving to figure out some
cleverly conducive way to get you to
send me information about what you
do and what you know, and presump-
tuously prying even into your imagina-
tions. Who am I, Internal Revenue or
something? Some hustler looking for a
scam-sketch? A computerized busy-
body? How can you write things to me
if you don't know to whom you're
writing or why?

Unlike another contributor to this
magazine (whose name I will not men-
tion but you can spell it with alpha-
numeric bits and pieces from two old
Z80s), I am not an anonymous person.
What I am in fact, as far as you are con-
cerned, is a sheep in wolf's clothing.

I am not and never have been a com-
puter whiz, nor even a hacker (though
some of my more ignorant and hysteri-
cal acquaintances might disagree). I
aman entrepreneur who makes it with
his micro. What I mean is that I make
money and books. I made my last four
books on my micro including the
galleys for pasteup. I look at a word

Edward S. Greenberg has more busi-
ness than he can handle, but it keeps ex-
panding anyway. Eddy calls himself a
consultant, but thinks of himself more
as a teacher. However you pronounce
it, he's up to his ears in action.
Operating in New York city under the
name Distributed Data Processing, he
teaches insurance salesmen how to use
micros and off-the-shelf software in
simple applications aimed mostly at
sales, with a few tricks thrown in for
administration. He says success comes
easily because he keeps things simple
and strictly on a practical level. He
believes this is what people want and
need, and their enthusiastic response
seems to bear him out. His business has
grown rapidly by word of mouth alone
- he has never advertised.

In the insurance field, salesmen depend
upon "illustrations" which consist of a
list of figures tailored for each potential
customer's facts. These figures will
show the customer the difference be-
tween payments made over 20 years
under term insurance, and payments
made over a like period under whole-

Lifelines /The Software Magazine, November 198236

processor not as a super-typewriter,
but as a cross between a chord organ
and a junior typesetting machine. Ten
years and several books later - law
yourself, hydroponics, health - I stand
before you as an ex-legal tired and re-
retired entrepreneur who is playing and
plying on the silicon shores for the
same reasons most of you are: it's more
fun and it's what's happening.

One of two current books in progress
for a noted micro publisher: Elegant
Computer Print or How to Make a
Good Impression With Your Micro-
computer With Professional Quality
Brochures, Flyers, Catalogues, Re-
ports, Newsletters, Proposals, Letters,
or Anything You Want People to Pay
Attention To. I may have to whittle the
title down a bit. The main message for
Lifelines' entrepreneurial readers is that
everything you send out in writing
should look good. You want to impress
people with the fact that you are pro-
fessional and competent. It is especially
inappropriate for any microcomputer
professional to send out written mate-
rial that is less than excellent, because
you are your own best example of the
power and potential of the microcom-
puter. You have to practice what you
preach.

With a little encouragement from you,
we could go into this in more detail in a
future column.

My column in Lifelines is an outgrowth
of a notion that one of the most inter-
esting things about micros may be the
variety of practical, entrepreneurial
uses to which they are put by active and
talented enthusiasts. That's you folks.
What you are doing is interesting to
me, and probably will be interesting to
your fellow Lifelines readers. That's
why I keep wheedling for information
from you about what you do, what
you have heard, what you can im-
agine.

I am proceeding on the theory stated in
the first column (last August) that Life-
lines is read by talented people who
are, or are about to be, or should be
making their way microwise. I assume
that you or your clients are involved
with entrepreneurial micromanship. I
can write about things that I think will
be useful and important to you, but I
would rather write about things that
you tell me are interesting. Please send

in your suggestions.

Now you know more about me, how
about telling me about you?

As promised, here at last is this month's
guaranteed money-saving tip. When
you write to us, use the pre-paid enve-
lope that Lifelines/ The Software Mag-
azine generously includes with every
magazine. The more often you write,
the more money you will save.

See you next month. Bye. H

'TM

A language for creators.

STOK PILOT can make your final
product more saleable and keep it sold.

This unique langauge allows straight-
forward creation of a friendly interface
between novice users and CP/M for
any program application Using STOK
PILOT, a software designer can easily
produce a hand-holding menu-driven
front-end supervisor with built in tutorials
to help guide the novice end-user through
a complex application The actual end-
user does not have to know STOK PILOT

STOK PILOT opens the door for
companies to evolve structured ap-
proaches to meeting their own training
needs.

STOK PILOT can simulate any
application program for the purpose of
tutoring the user. This allows training and
guidance without the necessity of working
on and possibly damaging live data. Then,
when the user is ready, STOK PILOT can
call the actual application program.

STOK PILOT is a superset of the PILOT
CAJ language. STOK PILOT was designed
with the syntax and structure of PILOT
because PILOT is an easy to use and easy
to learn language.

STOK PILOT can be thought of as an
interactive SUBMIT facility. One program
written in STOK PILOT can control an
entire session without ever entering
cumbersome CP/M commands. The
commands can be dynamically formed at
run time by STOK PILOT.

Menus can be created that will allow the
user to select various programs. STOK
PILOT can chain to any program or utility
written in any language, leaving the entire
TPA available, and regain control when the
other program ends.

STOK PILOT can check for the existence
of a file before it actually calls the application
that needs it. Let STOK PILOT see to it that
the proper disks have been inserted by the
user.

The package includes a well written and
indexed 75 page manual. All the instruc-
tions are explained in full detail. Many
useful programming examples are also
included

Complete 8 inch CP/M format disk and
manual retails for $129.95. The manual is
available alone for $14.95 and is deductible
from a future order. NY residents please add
sales tax.

Toll free order line: (800) 431-1953 ext 183
In NY (800) 942-1935 ext 183

C O D. - Mastercard - Visa

00
IM wvy 9R0&P611A'"

Stok Software Inc.
1 7 West 1 7th Street
New York, NY 10011
(212) 243-1444

Dealer inquiries invited
CP/M is TM of Digital Research

Lifelines/The Software Magazine, Volume III, Number 6 37

Volumes 86-90, Catalogues and Abstracts

CP/M Users Group
6K CGDEPCAL.BAS Depreciation Calculator

Capital Goods (Fixed Asset) Entry
Program
IRS Form 4652 - Depreciation
Printer
Depreciation Report Printer
Capital Goods Entry Sort Program
Cust. Mailing Label Printing Prog.

87.7
87.8 UK CGENTRY.BAS

87.9 3K CGFM4562.BAS

87.10 4K CGRPT.BAS
87.11 3K CGSORT.BAS
87.12 3K CRLABELS.BAS
87.13 5K DAENTRY.BAS
87.14 8K EFENTRY.BAS
87.15 5K EPCUTS.BAS
87.16 3K EPLABELS.BAS
87.17 7K EPTABS.BAS
87.18 UK ESENTRY.BAS
87.19 4K FGALERT.BAS

Volume 86

DESCRIPTION: BUSINESSMASTER II, Volume 1 of 5:
documentation.

SUBMITTED BY: Bud Aaron
BUSINESSMASTER
1207 Elm Ave, Suite M
Carlsbad, CA 92008 Date Entry Program

Federal Tax Table Entry Program
Payroll Cutoff and % Entry Prog.
EmpL Mailing Label Printing Prog.
Payroll Check Tab Entry Program
Cal. State Tax Table Entry Prog.
Finished Goods Inventory Alert
Printer

NO. SIZE NAME

2K -CATALOG.086
3K ABSTRACT.086
5K U-G-FORM.LIB
2K CRCKLIST.086
2K CRCK.COM

COMMENTS

CONTENTS OF VOL. 086
Release to public domain of BMII.
CPMUG Submission Form.
File of all file CRC's.
to check files on this disk.

FGENTRY.BAS Finished Goods Inventory Entry
Program

FGRPT.BAS Finished Goods Inventory Report
Printer

UK

4K

3K
5K

UK
3K

UK
3K
9K
3K
3K
3K
2K
3K

87.20

87.21

87.22
87.23
87.24
87.25
87.26
87.27
87.28
87.29
87.30
87.31
87.32
87.33

86.1 2K APPENDA.DOC Diskette handling tips for novices.
86.2 3K APPENDB.DOC Disk File Capacities.
86.3 4K APPENDC.DOC Data File Diskette Set-up.
86.4 2K APPENDD.DOC Programs Not Accessed Through

The Menu.
86.5 10K APPENDE.DOC Compilation of

BUSINESSMASTER II progs.
86.6 18K APPENDF.DOC General File Information.
86.7 14K APPENDG.DOC Forms for establishing acct. #'s etc.
86.8 2K APPENDH.DOC How to increase size of a data file.
86.9 7K GLOSSARY.DOC Glossary of terms
86.10 12K HIERARCH.DOC What program calls what, and

what CPMUG disk are they on?
86.11 132K NEW.DOC Comprehensive overall system doc.

FGSORT.BAS Finished Goods Entry Sort Prog.
FMTENTRY.BAS $ and % Format Entry Program
GLHENTRY.BAS G/L Heading Entry Prog.
GLHSORT.BAS
GLSENTRY.BAS
GLSSORT.BAS
MAENTRY.BAS
MALABELS.BAS
MASORT.BAS
MASTER4.BAS
MASTER6.BAS
MASTER7.BAS

G/L Heading Entry Sort Program
G/L Subheading Entry Program
G/L Subheading Entry Sort Prog.
Mailing List Name Entry Program
Mailing Label Printing Program
Mailing List Entry Sort Program
Inventory Menu
Mailing List Menu
Initialization Routines Menu

Note: All .DOC files are meant to be printed with WordStar;
however they are pre-formatted containing only TJ page ejects, and a
few WordStar'dot" commands, such as .pa and .pl. Also note: the
SUB files mentioned in APPENDE.DOC were not included with the
submitted material. I made a "COMPILE.SUB” for each volume
containing .BAS programs.

Periodic Maintenance Menu
General Ledger Heading Menu
Check Tabs and Cutoffs Menu

IK MASTER8.BAS
IK MASTER9.BAS
IK MASTER15.BAS

87.34
87.35
87.36
87.37 2K MASTER16.BAS Fixed Asset Accounting Menu
87.38 5K MMAINT.BAS Monthly File Maintenance Program
87.39 9K NAMENTRY.BASCompany Name Entry Program
87.40 3K NMSORT.BAS Company Name Entry Sort Prog.
87.41 6K QMAINT.BAS Quarterly File Maintenance Prog.
87.42 4K RGALERT.BAS Raw Goods Inventory Alert Printer
87.43 11K RGENTRY.BAS Raw Goods Inventory Entry Prog.
87.44 4K RGRPT.BAS Raw Goods Inventory Report

Printer
87.45 3K RGSORT.BAS Raw Goods Entry Sort Program
87.46 7K TAENTRY.BAS General Ledger Tab Entry Program
87.47 3K VPLABELS.BAS Mailing Label Printing Program.
87.48 6K YMAINT.BAS Yearly File Maintenance Program

Volume 87

DESCRIPTION: BUSINESSMASTER II, Volume 2 of 5:
initialization, startup, modification and
maintenance; inventory /fixed asset accounts;
mailing list;

SUBMITTED BY: See above

No. SIZE NAME

4K -CATALOG.087
5K U-G-FORM.LIB
2K CRCKLIST.087
2K CRCK.COM

2K COMPILE.SUB

87.1 IK ALL.BAS
87.2 4K BIZMII.BAS

87.3 2K CHECK.BAS
87.4 IK CONTROL.BAS
87.5 IK FORMAT.BAS
87.6 IK READHLE.BAS

COMMENTS

CONTENTS OF VOL. 87
Users Group Submission Form.
File of all file CRC's.
to check files on this disk.

To compile all programs.

Include FORMAT and CONTROL
Master Menu BUSINESSMASTER
II. (bizmii)
Check for needed files
Set up control chars for term.
Set common and formats.
Read name, date, formats and tabs.

Volume 88

DESCRIPTION: BUSINESSMASTER II, Volume 3 of 5:
sample data files; payroll;

SUBMITTED BY: See above

NO. SIZE NAME COMMENTS
CONTENTS OF VOL. 088
Users Group Submission Form.
File of all file CRC's.
To check files on this disk.

4K -CATALOG.088
5K U-G-FORM.LIB
2K CRCKLIST.088
2K CRCK.COM

Lifelines /The Software Magazine, November 198238

Sample Data Files
6K CG.
IK CGSIZE.
IK CHK.
9K CR.
IK CRSIZE.
IK DATE.
4K EDEP.
IK EDEPSIZE.
IK EF.

UK EP.
IK EPSIZE.
IK EPC.
IK EPT.
IK ES.
6K FG.
IK FGSIZE.

14K GL.
IK GLSIZE.
6K GLCD.
IK GLCDSIZE.
2K GLCK.
IK GLCKSIZE.
IK GLF.
2K GLH.
IK GLHSIZE.

13K GLJO.
IK GLJOSIZE.
IK GLREF.

4K GLS.
IK GLSSIZE.
IK GLT.
IK INV.
9K IR.
IK IRSIZE.
8K MAO.
IK MAOSIZE.
IK NM.
IK NMSIZE.
3K PO.
IK POSIZE.
IK POE.
3K TM.
5K VP.
IK VPSIZE.4

4
Is

.
£s

.
C

P
tp

tp

tp

C

P
tp

C

P
tp

tp

C

P
4

'<
jJ

N
O

H
O

C
O

'q
O

tn

C
P

N
)H

O
O

O
Volume 89

Cost of goods sold file.
in use 4- max size of above
?? next check # to write??
Customer receivables file
in use -I- max size of CR file
Date information
Federal deposit record
in use + max size of EDEP file
Federal Withholding Tables
Consolidated employee payroll
in use + max size of EP file
Payroll cutoff amounts
Payroll Check Printing Tabs
California Withholding Tables
Finished goods inventory
in use + max size of FG file
General ledger file
in use + max size of GL file
Check disbursements
in use 4- max size of GLCD file
Check receipts
in use 4- max size of GLCK file
General ledger formats
General ledger heading file
in use 4- max size of GLH file
General journal gljo
in use 4- max size of GLJO file
General Ledger Account #
Reference File
general ledger subheading file
in use 4- max size of GLS file
General ledger report tabs
Invoice # File
Invoice register
in use 4- max size of IR file
Mailing list file
in use 4- max size of MAO file
Company Name File
in use 4- max size of NM file
Purchase order register
in use 4- max size of PO file
Purchase order numbers
Time card record
Vendor payables file
in use 4- max size of VP file

DESCRIPTION: BUSINESSMASTER II, Volume 4 of 5:
purchase order/payables; order
entry /receivables;

SUBMITTED BY: See above

NO. SIZE NAME COMMENTS

2K
5K
2K
2K

-CATALOG.089
U-G-FORM.LIB
CRCKLIST.089
CRCK.COM

CONTENTS OF VOL. 089
Users Group Submission Form.
File of all file CRC's.
to check files on this disk.
To compile all following programs
Include FORMAT and CONTROL
Master Menu BUSINESSMASTER
II. (bizmii)
Check for needed files
Set up control characters for term.
Set common and formats.
Read name, date, formats and tabs.
Customer Information Entry Prog.
Formatted Invoice Printing Prog.
Invoice Register Printing Program
Accounts Receivable Posting Prog.

CHECK.BAS
CONTROL.BAS
FORMAT.BAS
READFILE.BAS
CRENTRY.BAS
CRFMINV.BAS
CRJOLIST.BAS
CRJOPOST.BAS
CRJOTRAN.BAS Order /Invoice Entry Program
CRLABELS.BAS
CRPPINV.BAS
CRRPT.BAS

Customer Mlg Label Printing Prog.
Preprinted Invoice Printing Prog.
Aged Accounts Receivable
Statement Printer
Customer Information Entry Sort
Program
Invoice Number Sequencing Entry
Program
Accts Rcvable/ Customer Menu
Accounts Payable /Vendor Menu
P.O. # Sequencing Entry Prog.
Vendor Information Entry Program
Formatted P.O. Printing Prog.
P.O. Register Printing Prog.
Accounts Payable Posting Program

MASTER2.BAS
MASTER3.BAS
POENT.BAS
VPENTRY.BAS
VPFMPO.BAS
VPJOLIST.BAS
VPJOPOST.BAS
VPJOTRAN.BAS Purchase Order Entry Program
VPLABELS.BAS
VPPPPO.BAS
VPRPT.BAS

Mailing Label Printing Program
Preprinted P.O. Printing Prog.
Aged Accounts Payable Statement
Printer
Vendor Info. Entry Sort Prog.

COMPILE.SUBIK
IK
4K

ALL.BAS
BIZMII.BAS

89.1
89.2

2K
IK
IK
IK

12K
7K
8K
5K

13K
3K
7K
4K

89.3
89.4
89.5
89.6
89.7
89.8
89.9
89.10
89.11
89.12
89.13
89.14

3K CRSORT.BAS89.15

IK INVENT.BAS

3K
3K
IK

12K
7K
8K
5K

13K
3K
7K
4K

rH

rH

r—
< (N

(SJ CSI CCI (N

Ps|

(SJ
P4

O
' O

' O
' O

' O
' O

' O
' O

' O
' O

' O
'

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

Common Programs
These would not fit on this volume because of 64 directory entry
limit. Get them from another volume (87, 89, 90).

3K VPSORT.BAS

oo(No:00

Note: ALL, FORMAT, and CONTROL are % include files.
Include FORMAT and CONTROL
Master Menu BUSINESSMASTER
II. (bizmii)
Check for needed files
Set up control characters for term.
Set common and formats.
Read name, date, formats and tabs.

IK ALL.BAS
4K BIZMII.BAS

2K CHECK.BAS
IK CONTROL.BAS
IK FORMAT.BAS
IK READFILE.BAS

Volume 90

DESCRIPTION: BUSINESSMASTER II, Volume 5 of 5: general
ledger;

SUBMITTED BY: See above

NO. SIZE NAME

3K -CATALOG.090
5K U-G-FORM.LIB
IK CRCKLIST.090
2K CRCK.COM

IK COMPILE.SUB

90.1 IK ALL.BAS
90.2 4K BIZMII.BAS

90.3 2K CHECK.BAS
90.4 IK CONTROL.BAS

COMMENTS

CONTENTS OF VOL. 090
Users Group Submission Form.
File of all file CRC's.
to check files on this disk.

To compile all following programs

Include FORMAT and CONTROL
Master Menu BUSINESSMASTER
II. (bizmii)
Check for needed files
Set up control characters for term,

(continued next page)

Payroll Programs
IK COMPILE.SUB To compile all following programs

4K
IK
8K

14K
6K
9K
3K
5K
5K
5K

EPCHECKS.BAS
EPCLEAR.BAS
EPDPOSIT.BAS
EPENTRY.BAS
EPJOPOST.BAS
EPJOTRAN.BAS
EPLIST.BAS
EPSORT.BAS
EPSUMARY.BAS Payroll Register Printer
FED941PR.BAS Federal Form 941 Quarterly Tax

Return Printer

Payroll Check Printer
Employee payroll clearing program
Federal Tax Deposit Entry Program
Employee Payroll Rec. Entry Prog.
Payroll Journal Posting Program
Payroll Calculation Program
Payroll File Listing Program
Employee Info Entry Sort Program

tn

tn

tn

tn

tn

4
4

4
►

U
C

P
M

H
O

O
O

O
'q

O
C

n

Lifelines/The Software Magazine, Volume III, Number 6 39

Program
90.18 IK GLCLEAR.BAS Clear all $ values in the G/L file
90.19 11K GLENTRY.BAS G/L Entry Program
90.20 10K GLINCOME.BAS Income Statement Printer
90.21 9K GLJOPOST.BAS General Journal Posting Program
90.22 4K GLJOSORT.BAS General Journal Sorting Program
90.23 13K GLJOTRAN.BAS General Journal Trans. Entry

Program
90.24 3K GLSORT.BAS G/L Entry Sort Program
90.25 6K GLTBAL.BAS G/L Trial Balance Printer
90.26 3K MASTER1.BAS General Ledger /General Journal

Menu
90.27 2K MASTER11.BAS General Journal Menu
90.28 IK MASTER12.BAS Check-Cash Rcpts-Disbrsmts Menu

Note: ALL, CONTROL, and FORMAT are % include files.

90.5 IK FORMAT.BAS Set common and formats.
90.6 IK READFILE.BAS Read name, date, formats and tabs.
90.7 11K GCINCOME.BAS Comparative Income Statement

Printer
90.8 4K GDCHECKS.BAS General Check Printer
90.9 5K GLBALSHT.BAS General Ledger Balance Sheet

Printer
90.10 3K GLBUDGET.BAS General Ledger Budget Analysis

Printer
90.11 9K GLCDPOST.BAS Check Disbrsmt Posting Prog.
90.12 4K GLCDSORT.BAS Check Disbrsmts Entry Sort Prog.
90.13 15K GLCDTRAN.BAS Check Disbrsmts Jml Entry Prog.
90.14 4K GLCHART.BAS G/L Chart of Accounts Printer
90.15 9K GLCKPOST.BAS Check Receipt Posting Program
90.16 4K GLCKSORT.BAS Check Disbrsmts Entry Sort Prog.
90.17 14K GLCKTRAN.BAS Check Rcpts Journal Trans. Entry

Abstracts We are placing this package in the Pub-
lic Domain to clear up a problem that
has been generated for literally thou-
sands of people who purchased this
package from one source or another
and currently do not know where they
stand.

For those End-Users who are not satis-
fied with their Version of BUSINESS-
MASTER II or Visaccount we will ex-
change your package for the new and
much improved BUSINESSMASTER
11+ for $100. Simply mail your
original diskettes (OEM or Visaccount)
and license to us. We will put the new
package on your diskettes with new
labels, a new licensing agreement and a
new manual and return it to you.

For dealers who purchased BUSINESS-
MASTER II from OEM software, you
may continue to do as you wish with
the package but we cannot upgrade
your package to BUSINESSMASTER
II + . However we do offer dealer dis-
counts on our newer packages.

We have offered the package to The
CP/M Users Group for inclusion in
their library on the understanding that
it may be used in any way, either com-
mercial or non-commercial by anyone
who chooses to use it provided credit is
given for such use.

We will continue to supply BUSINESS-
MASTER 11+ to end-users for $159
and BUSINESSMASTER Plus with
fully-formatted fill in the blanks screen
and B Tree Indexing for $289. These
packages are compilable with minor
changes under CB-80.

(signed)
Bud Aaron
BUSINESSMASTER

Lifelines/The Software Magazine, November 1982

There are six .BAS files which are on
every disk: ALL, FORMAT, CON-
TROL, CHECK, READFILE, AND
BIZMII.

The remainder of this abstract is the
press release officially releasing BUSI-
NESSMASTER II into the public do-
main.

Ward Christensen

BUSINESSMASTER II is a general busi-
ness software package for CBASIC2,
occupying CPMUG volumes 86-90, en-
compassing, by volume:

86 documentation;
87 initialization, startup, modifica-

tion and maintenance; inven-
tory/fixed asset accounts; mail-
ing list;

88 sample data files; payroll;
89 order entry /receivables; purchase

order/payables;
90 general ledger;

There were seven single density disks
originally contributed: five program
disks one documentation disk, and one
sample file disk. I combined these seven
disks to produce five CPMUG vol-
umes. Thus not all references in the
various documentation will directly
apply disk by disk, but all the files sub-
mitted are included.

Only the files "CRJOSORT.BAS" ,
"VPJOSORT.BAS", and the submit
files for copying, XREFing, PIPping,
and compiling with printing are in the
documentation but not included in this
collection. The contributor felt the two
missing ".BAS" programs to be unnec-
essary. Also a minor bit of REM docu-
mentation seems to be missing off of
the front of GLJOSORT.BAS.

I generated a compile submit file for
each disk. The submit files have the
form:

$1 $2filename.typ $3 $4

Thus to compile them from the A: disk
to the B: disk, type:

submit compile CBASIC2 A: B: $B

BUSINESSMASTER II Released into
Public Domain

For the protection of those who have
purchased a package of General Busi-
ness Software known as BUSINESS-
MASTER II or Visaccount (which was,
as of March 1982, at least 95 % deriva-
tive of BUSINESSMASTER II) from
either OEM Software (a Star Computer
Systems company), Computer Services
Corporation of America, 800-Software
or other dealers OEM Software has es-
tablished, we are hereby declaring this
old version of BUSINESSMASTER II
to be in the Public Domain . The
Copyright notices were removed by
OEM Software and the package was
then sold to over 400 dealers for $375.

One of many dealers purchasing the
package was Computer Services Cor-
poration of America. Buck Lindsey
CEO of Computer Services Corpora-
tion of America advised me last year
that he felt the package was in the
public domain and whether it was then
or not, it is now.

Computer Services Corporation of
America made some minor changes to
the package and renamed it Visac-
count. Additionally they made 800-
Software a discount dealer.

Feature

A Review Of Dataflex ___________
Steve Patchen

Data Access Corporation
4221 Ponce De Leon Blvd.
Coral Gables, Florida 33146
List Price: $750
Demo Package: $100

Dataflex is a database system including entry, reporting and
other utilities for application development. The data man-
agement routines are also available optionally as MTPascal
libraries. The source code for the Entry and the Report
routines are included with the libraries. The system is
therefore available as a fairly complete application develop-
ment environment. The availability of the libraries and
source code permits custom programming, useful in over-
coming unusual problems encountered with some applica-
tions. Without programming, implementation using the ex-
isting entry and report facilities is still too complicated for
beginners and non-programmers. Even experienced pro-
grammers will find their initial learning experiences difficult.
However, when one becomes familiar with the system, entry
screens and reports can be implemented fairly quickly.

The data structures utilized by the system are Codasyl net-
work type parent-to-child relationships, one way associa-
tions - not two-way mappings. Thus, a one-to-many rela-
tionship in one direction does not imply a many-to-one rela-
tionship in the other direction. Many-to-many relationships
require an additional root file, providing the multiple links to
the two files. It might be possible to provide fully relational
mappings by writing additional Pascal programs which by-
pass some of the library functions, but this restriction does
not cause trouble in most cases.

The second report of the example application attempts to im-
plement a cyclic relationship (see Hubbard page 36). On the
recommendation of Data Access, I created a second file defi-
nition for the first file (30 and 32) to force the system to use
two buffers for the file. The way the system works you can-
not force the first file definition buffer to abandon the original
record and find records by references from the second file
(31), field (4). Relationships are explicitly defined in the file
definitions, as are the ISAM indices.

The example application which I developed to exercise the
Dataflex system is a simple reference card entry and reporting
system. I utilized the cards to describe the Dataflex com-
ponents, so you should read the example report as required.
Each card consists of a title, a category, a date, twelve lines of
text and a list of references. The parts are two files, an entry
routine and two report routines. The first report dumps all
the cards in the files and prints each on an 8 1/2 by 11 inch
page. The second report attempts to print all the cards refer-
enced by a single selected card. Using the first report, I
dumped the cards into the article, then removed the blank
lines and did a little more editing, so the cards do not look ex-
actly as they would if printed by Dataflex. The second report
was not tested because I ran out of memory. (Dataflex re-
quires a TPA of 51k. My system is a 64k Z80 with Morrow
Lifelines/The Software Magazine, Volume III, Number 6

CARD FILE REPORT

PAGE CONCEPT CARDS DATE: / /

UPDATED: / /
CATEGORY:

@
@

@
@

@
@ ---

@
@ ---

@
_________________________@
___________________________@
__________________________@

REFERENCES:
NO. CATEGORY CARD TITLE

@

/*
1 1 30 1 31 1
55
1
0 0 0 0
1 17 1 19
20 22 20 20
30 30 21 22
0 0 0 0

1 2 0 0 1
2 0 12 2
3 0 30 1 3
4 0 30 2 4
5 0 30 3 5
6 0 30 4 6
7 0 30 5 7
8 0 30 6 8
9 0 30 7 9
10 0 30 8 10
11 0 30 9 11
12 0 30 10 12
13 0 30 11 13
14 0 30 12 14
15 0 30 13 15
16 0 30 14 16
17 0 30 15 17

20 0 31 2 18
21 0 31 3 19
22 0 31 4 20

30 12 0 0 57

999

(continued next page)
41

EXAMPLE REPORT OF CONCEPT CARDS

PAGE 1 CONCEPT CARDS DATE: 9/ 2/82

DATAPLEX—DESCRIPTION UPDATED: 9/ 2/82
CATEGORY: ARTICLE

The DATAPLEX system is composed of File definition routines, an
Entry procedure, a Report procedure, a Query procedure, a menu
utility and some utility programs. In addition there is a terminal con-
figuration routine.

The system is written in MTPascal. The source listings are avail-
able separately. A section of the manual is devoted to the description
of these Pascal modules and programs.

The manual and diskettes contain sample data files and Entry and
Report forms to illustrate the creation of applications. The manual in-
troduction has a discussion of system concepts and a user level in-
troduction. The rest of the manual contains information required to
implement application systems. There are appendices covering er-
ror messages, file requirements and expressions.

REFERENCES:

Designs drives and a Winchester. The Winchester requires
about 4.5k worth of drivers. This puts my BDOS at D600H
which is only a 53.5k TPA. Having only 2.5k above the mini-
mum does not allow me to open the third file I needed.)

The reports and entry screen forms have similar formats. A
mask for the report or screen is followed by a specification
program, consisting of some lines of declarations followed by
numbered lines of code. The programs are composed almost
entirely of lines of numbers, except where one is differen-
tiating between screen window references and file field
references. (W5 references the 5th screen window and Fl,5
references the 5th field of file 1.) This primitive method of
programming makes it very difficult to read the programs
and even harder to create them. It takes a considerable
amount of time to learn the numeric codes before a program-
mer can get started with even the simplest application. The
programs are usually short, so it is nevertheless possible to
become proficient at creating them.

The body of the program basically specifies what action
should be taken at each window. In addition, conditional
branching is possible to anywhere within the window pro-
cessing sequence. Windows can be modified by the operator
or by expressions using windows and file fields. The screen
form also allows for up to six dedicated subroutines. If pres-
ent, one is activated upon entry to the routine, one by the
delete function key, one by the save function key or the end of
screen save, one prior to completing a requested screen clear,
one before exiting the program and one is reserved for the
user function key.

The screen mask consists of literal strings and fixed length
field definitions, with three picture formats to match the three
data types. A string consisting of underline characters only
defines an ASCII string field. If a period appears anywhere in
the field, the field is defined as a numeric type. The picture
' / / ' or / / ' defines a date
format. The same entry format is used for locating, editing,
creating and deleting records. A find function key must be
depressed in a key field containing the key for the record re-
quired, in order to locate and display a record for editing or
deletion. Creating a record is performed by clearing the
screen fields and entering new information. The edited or
new record is saved by pressing the save function key or by
responding to the prompt issued when passing the last screen
field.

The behavior of the screen is at first confusing. Operations of
most of the special function keys are straightforward. The
space forward and back, the delete and insert character and
the key to clear all windows act as expected (almost).

The keys I found most difficult were those which position the
file records. If you are in a window with a field which is a key
to a record and request a find, the system locates the record
with that key (if it is not already current). Likewise, if you are
on a key to the primary file for the screen files and request a
superfind all the records referenced are located. If you are in a
window which does not contain an index field you get an er-
ror message; if you are not in a primary index window results
are unpredictable.

The previous and next record functions act differently, de-
pending upon where the cursor is and whether a find or
superfind function has been executed. The previous and next
record functions move you from one card to the next if you
are in the title window. If you are in the reference number

42

NO. CATEGORY CARD TITLE
1 ARTICLE DATAFLEX—ENTRY
2 ARTICLE DATAPLEX—REPORTS
3 ARTICLE DATAPLEX—QUERY
4 ARTICLE DATAPLEX—FILES
5 ARTICLE DATAPLEX—MANUAL
6 ARTICLE DATAPLEX—UTILITIES
7 ARTICLE DATAPLEX—MENUS
8 ARTICLE DATAPLEX—INSTALLATION

PAGE 2 CONCEPT CARDS DATE: 9/ 2/82

DATAFLEX—ENTRY UPDATED: 9/2/82
CATEGORY: ARTICLE

The entry procedure consists of a screen format and the necessary
data files. The screen format is created with a word processor. It con-
sists of a mask for the screen display exactly as it will appear on the
screen with no data entered. This mask is followed by a specification
program written in lines of numbers. The language syntax is not dif-
ficult, but having to write programs by numbers is a regression to the
cave man days of programming.

Errors in the program are reported on the bottom line. Frequently
they only flash on the screen for an instant. I found myself having to
develop ways of getting the error to repeat enough to read the
message. Although the syntax is not difficult, the structure of the
system is very hard to grasp. I do not think anyone without a great
deal of experience will be able to deal with the requirements of
developing applications.

REFERENCES:
NO. CATEGORY CARD TITLE

1 ARTICLE SAMPLE-APPLICATION— DESCRIPTION
2 ARTICLE SAMPLE—ENTRY—PROGRAM

PAGE 3 CONCEPT CARDS DATE: 9/ 2/82

DATAPLEX—FILES UPDATED: 9/ 2/82
CATEGORY: ARTICLE

File creation and maintenance are handled by one routine. It has en-
tries to create files, define or edit fields, create or change indices, list
or print the definitions and to erase the data in a file. There is also a
facility to create single file images from a screen definition. When you
add or delete fields to a file with data in it the system automatically
repositions the fields in each record. Once when I made some exten-
sive changes I lost my data. Therefore, you should plan ahead when
changing the file structures.

REFERENCES:
NO. CATEGORY CARD TITLE

1 ARTICLE FILE—DEFINITION
2 ARTICLE FILE—INDICES

Lifelines/The Software Magazine, November 1982

window you move back and forth between the first and last
references for the card you are in. If you attempt to exceed the
existing references, an error message is displayed and scan-
ning is inhibited until you execute a find or a superfind. A
superfind allows the card boundaries to be exceeded and the
card information changes as you pass from one card to the
next. If you bump into one end or the other, you again get
stuck until you issue a find or superfind.

There is a utility to create a file definition from a screen form,
but it only works for single file entry screens. File definition is
at the physical level. Conceptual and logical models must be
constructed outside the system before implementation is at-
tempted. Nevertheless, Codasyl network models could be
mapped into Dataflex structures.

The menu system seems to run completely independently of
the other modules. It is loaded with CP/M-80 command lines
or "MENU menuname' commands. I found the menus easy to
understand and use, yet powerful. A typical command to run
the screen entry would be 'ENTER CARDS'. This could be
loaded into a menu selection or executed directly from
CP/M. The menu system is an excellent integration tool. This
and the Codasyl-like structures provide assurance that many
application structures can be implemented.

There is no integral backup system, so you must use PIP or
provide your own. A menu entry prompts for a source and
destination file and calls PIP with the parameters entered.
Lists of files and file type uses are provided in the appendices
to help you decide which files have to be copied.

The most bothersome aspects of using Dataflex were writing
programs as strings of numbers, and running out of memory
for a simple task like the second report. The memory problem
could be overcome by running Dataflex on one of the 16-bit
processor machines it is available for; these have a larger
memory address space. Possibly a feature could be provided
to allow bank switching of extra memory for additional buf-
fer space in 8-bit machines. The only solution to the unread-
able program problem I can think of is a preprocessor which
accepts symbolic labels and operator mnemonics. Otherwise
the system is useful for implementing a wide range of applica-
tions.

References:
Hubbard, G.U. 'Computer Assisted Data Base Design', Van

Nostrand Reinhold, NY, 1981.
Date, CJ. 'An Introduction to Database Systems', 2nd. Ed.,

Addison Wesley, Reading, Mass. 1977
Lifelines, The Software Magazine:

"The Software Evaluation Group", Vol I No. 4
"How to Use a Data Management System", Vol I No.5
"The Software Evaluation Group Review Format", co-

authored with E. Paulette, Vol. I No. 5
"Introduction to Data Management Systems" by J.

Lehman & T. Berla, Vol. I. No. 6
"The Software Evaluation Group: Business Application

Problem Definitions", co-authored by E. Paulette, Vol. I No. 7
"A Review of the Condor Database System", co-authored

by E. Paulette, Vol. I No. 11
'The Software Evaluation Group: SELECTOR IV", co-

authored by T. Berla, Vol. II No. 1
"Criteria For Evaluating Application Development Soft-

ware", Vol. Ill No.l

PAGE 4 CONCEPT CARDS DATE: 9/ 2/82

DATAPLEX—MANUAL UPDATED: 9/ 2/82
CATEGORY: ARTICLE

The manual does not contain an index. The table of contents covers
each sub-section but I spent a long time trying to relocate particular
terms or explanations. There are summary tables but many are in in-
dividual sections rather than in an appendix. Except for general
operator instructions, understanding and using the system requires
the experience of a programmer. The manual is over 200 pages and
contains a lot of detail. The explanations are clear, but often impor-
tant implications are not discussed. I found that I had to spend a lot of
time learning DATAFLEX before I could do even the simple applica-
tion attempted for this article.

REFERENCES:
NO. CATEGORY CARD TITLE

1 ARTICLE DATAPLEX—MANUAL

PAGE 5 CONCEPT CARDS DATE: 9/ 2/82

DATAPLEX—MENUS UPDATED: 9/ 2/82
CATEGORY: ARTICLE

The menu system can route to other menus, can perform flex opera-
tions or CP/M commands by selection. The menu editor allows you
to create, display and delete menus. The direct commands include
substitutes for the CP/M DIR, ERA, TYPE, USER and SUBMIT. In ad-
dition NAME does the REN function and RESET does a warm boot.
There is also a PAUSE and a CLS to clear the screen. You can re-
quire a password to gain access to individual menu selections.
Parameters can be introduced to menu selections by providing
operator prompts. The menu system can be configured to autoload.
REFERENCES:
NO. CATEGORY CARD TITLE

1 ARTICLE none

PAGE 6 CONCEPT CARDS DATE: 9/ 2/82

DATAPLEX—QUERY UPDATED: 9/ 2/82
CATEGORY: ARTICLE

The Query routine allows ad hoc and selective listing of records and
fields, one file at a time. The operator is led through a series of ques-
tions to fill out a query specification. The query can be sent to the
printer, terminal or a file. This routine allows versatile interaction with
individual files but not queries or reports on related files. The report
routine should be used for reports from related files.
REFERENCES:
NO. CATEGORY CARD TITLE

1 ARTICLE DATAPLEX—QUERY

PAGE 7 CONCEPT CARDS DATE: 9/ 2/82

DATAPLEX—REPORTS UPDATED: 9/ 2/82
CATEGORY: ARTICLE

The report procedure is composed of parts similar to the entry. The
report program is more complicated, consisting of Header,
Subheader, Body, Subtotal and Total sections. It did not take me as
long to implement the report as it did the entry screen, due in part to
my having gained experience with the system and in part to my call-
ing Data Access for help when I didn’t understand why it wouldn’t
work. The system puts everything into memory, minimizing disk ac-
cesses. However, this limits the complexity of the report and the
number of files you can have active in any report. Updating of files is
conducted while executing a report routine. As many files as
memory allows can be used in the update.

REFERENCES:
NO. CATEGORY CARD TITLE

1 ARTICLE SAMPLE— APPLICATION REPORT -4
Lifelines/The Software Magazine, Volume III, Number 6 43

CARD REFERENCE REPORTPAGE 8 CONCEPT CARDS DATE: 9/ 2/82

PAGE CONCEPT CARDS DATE: / /

TITLE CARD @
REFERENCE CARD NO.
UPDATED: / / CATEGORY:

DATAPLEX—UTILITIES UPDATED: 9/ 2/82
CATEGORY: ARTICLE

There are three utilities provided in addition to the other routines. The
Re-Index routine rebuilds damaged or lost indices. The Free List
routine rebuilds the free list of deleted records in a file. It is able to
recover files with garbaged records by deleting them. The Read
routine is able to load an ASCII file with one field per line to a
database file.

REFERENCES:
NO. CATEGORY CARD TITLE

1 ARTICLE none

----------@
@

@
____________@

—— @
@

------------------------------@ --
@

@
--@

@
■ ■ — @

*/ *
1 1 30 1 32 1 31 1
55
1
0 0 0 0
13 15
4 19 5 20
30 30 21 22
0 0 0 0

PAGE 9 CONCEPT CARDS DATE: 9/ 2/82

DATAFLEX—INSTALLATION UPDATED: 9/ 2/82
CATEGORY: ARTICLE

Installation is implemented in four parts. The first asks the operator
some questions which can be answered with a yes or no. They
establish whether the system is for multi-users and if the return key is
required to leave a field. Part two asks the operator to respond with
keys to be used for several special functions. The third and fourth
parts require the operator to enter the decimal equivalent of number
sequences sent to the terminal to control it and the cursor. The menu
for the installation program has options to view the configuration on
the screen or to print it.

REFERENCES:
NO. CATEGORY CARD TITLE

1 none

ENTRY SCREEN SPECIFICATION

NAME: DATE: / /
TYPE:

1 2 0 0 1 ; TODAY’S DATE
2 0 12 2
3 0 30 1 3

4 0 31 4 4
5 0 31 2 5
6 0 32 2 6
7 0 32 3 7
8 0 32 4 8
9 0 32 5 9
10 0 32 6 10
11 0 32 7 11
12 0 32 8 12
13 0 32 9 13
14 0 32 10 14
15 0 32 11 15
16 0 32 12 16
17 0 32 13 17
18 0 32 14 18
19 0 32 15 19

30 12 0 0 57

REFERENCES:

/*
*1 30 31 32
0 0 0 0 0
1 34 32 2 2 :F1 ,2
2 40 30 1 1
3 145 30 0 11
33 30 3 3
33 30 4 4
33 30 5 5
33 30 6 6
33 30 7 7
33 30 8 8
33 30 9 9
11 8 31 2 10
12 145 31 0 20
13 1 31 3 11
1 31 4 12
1 31 5 13
1 31 6 14
1 31 7 15
1 31 8 16
1 31 9 17
20 8 32 3 18
21 1 32 4 19
255

; DATE THE FILE
; NAME
; SKIP DISPLAY IF SAME RECORD

999
& ENTER TITLE FOR CARD REFERENCES YOU WANT:
? 12 31 1 $&1
/*

TABLE R5
APPLICATION GENERATION SYSTEMS

; SKIP IF SAME RECORD

I. APPLICATION SUITABILITY
1. Does the method required for specifying appli-

cations reflect an understandable and logical
model of the domain of applications for which it is
intended?

Although problem specification must be done
before using Dataflex the data model used is
close to the Codasyl network model.

Lifelines/The Software Magazine, November 198244

FILE DEFINITION LISTING FOR FILE

FILE ROOT NAME = CONCEPTS
USER DISPLAY NAME = CONCEPTS
SHORT NAME = CONCEPTS

RECORD LENGTH = 1024 (USED = 986)
MAX NUMBER OF RECORDS = 6000 (USED = 9)
DELETED SPACE IS REUSED
MULTI-USER RE-READ ACTIVE

TABLE R5 (cont)

2. Can the application be completely specified?
A wide range of applications could be speci-
fied in a manner that could be implemented by
this system.

3. Is the implemented system testable against the
specification for the system or vice versa?

Implementation is not always straightforward
and might not reflect the application directly.

4. Does the development system make it easy to
extend and rework the specification and im-
plementation?

Reworking implementation is not too difficult.

II. IMPLEMENTATION SUITABILITY
1 . Are the restraints and limitations of the implemen-

tation environment made clear to the designer?
Logical limitations are only partially explained
in the manual.

2. Are tools for system implementation complete or
are other independent tools required?

I had to provide my own editor, but they have
an editor available.

3. Is the implementation environment extensible to
include new components or components from
other systems?

Yes, libraries are available for the data man-
agement routines and source code for the en-
try and report routines are available for use
with MTPascal.

FIELD FIELD FIELD FIELD DEC MAIN RELATES—TO
NMBR OFFSET LEN TYPE PTS INDEX FILE FIELD

1 32 ASCII
—

1 0 0 TITLE
2 33 3 DATE 0 0 0 DATE

36 15 ASCII 0 0 0 TYPE
51 78 ASCII 0 0 0 LINE1

5 129 78 ASCII 0 0 0 LINE2
6 207 78 ASCII 0 0 0 LINE3

285 78 ASCII 0 0 0 LINE4
78 ASCII 0 0 0 LINE5

9 78 ASCII 0 0 0 LINE6
10 519 78 ASCII 0 0 0 LINE7
11 597 78 ASCII 0 0 0 LINE8
12 675 78 ASCII 0 0 0 LINE9
13 78 ASCII 0 0 0 LINE10
14 78 ASCII 0 0 0 LINE11
15 909 78 ASCII 0 0 0 LINE12

INDEX 1: FIELD SEGMENTS: <1>

»»«»* «««
FILE ROOT NAME = CARDS
USER DISPLAY NAME = CONCEPT-CARDS
SHORT NAME = CARDSt**
RECORD LENGTH = 512 (USED = 81)
MAX NUMBER OF RECORDS = 6000 (USED = 23)
DELETED SPACE IS REUSED
MULTI-USER RE-READ ACTIVE*»************* ************** **********************

FIELD
NMBR

FIELD
OFFSET

FIELD
LEN

FIELD
TYPE

DEC
PTS

MAIN
INDEX

RELATES—TO
FILE FIELD

1

ASCII 1 ~30" 1 TITLE
2 2 NUMERIC 0 1 0 0 REFERENCE-NUM

15 ASCII 0 0 0 TYPE
50 32 ASCII 2 32 1 CARD REFERENCE

INDEX 1: FIELD SEGMENTS: <1> <2>
INDEX 2: FIELD SEGMENTS: <4> <0>

TABLE R2
Qualitative Factors

Documentation
organization for learning
organization for reference
readability
includes all needed information

Rating*

4
4
6
5

Ease of use
initial start up
conversion of external data
application implementation
operator use

6
4
5
5

Error Recovery
from input error
restart from interruption
from data media damage

6
6
6

Support
for initial start up
for system improvement

6
+

t Additional library and source code availability make
system improvement possible.
* Ratings in this table will be in a 1-7 scale where:

1 = clearly unacceptable for normal use
4 = good enough to serve for most situations
7 = excellent, powerful, or very easy depending

on the category

III. USER/DESIGNER SUITABILITY
1. Are the user interfaces developed by system and

those used to develop application understand-
able from terms of tasks to be performed or do
unrelated details obscure the operation?

There are only a few confusing details that the
operator has to face, but the designer has
many confusing details to face.

2. Does user feel in complete control of system or
do obtuse messages and unexplained opera-
tions leave him in confusion or frustration?

There are a few frustrations.
3. Does the system seem to have been designed

with psychological criteria for short term memory,
closure of tasks, response time and user control
in mind?

Maybe, but not consistently.

IV. MACHINE SUITABILITY
1 . Are limitations imposed by the machine environ-

ment understandable in terms of application lim-
itations and are application requirements trans-
latable to machine requirements?

INDIRECTLY understandable. Designer is
notified of available memory at key places.

2. Are any provisions made in the development
system to allow optimization in different machine
environments?

NO
3. Is it possible to extend the machine environment

without major changes to applications already
implemented?

YES
(continued next page)

Lifelines/The Software Magazine, Volume III, Number 6 45

TABLE R3
Data Management Capabilities

A. Underlying Data Model
1. Data Types

ASCII, NUMERIC(integer and fixed point)
DATES

2. Relationships
1:1,1:M, M:M all one direction associations

B. Functions Provided
1. a. Data dictionary maintenance

A simple file dictionary is provided
b. Data reorganization & conversion.

Some field reorganization is provided
data conversion is limited to one format.

2. a. Data entry and editing GOOD
Multiple file entry is possible.

b. Report generation GOOD
Single file queries and multifile reports are
provided

3. a. Data selection by predicate
Selection of records by predicate is used
in reports and queries.

b. Data joining & relating multiple data sets
Multiple file relations are provided
joining is present only as file updating
from multiple files.

c. Calculations on data GOOD
Including conditional calculation.

4. a. Data independent application interface
Good independence is provided by the data

management routine libraries

TABLE R1
Facts & Figures

Package or Version name:
DATAPLEX VERSION 1.6

Price:
List price $750
Demo Package $100

Systems available for:
CP/M-80, Z80, 8085, 8088, 8086 CP/M-86,
MSDOS, TURBODOS, IBM, XEROX, HP, IMS,
TELEVIDEO, ALTOS, TRS-80 II, S-100
requires cursor addressable terminal

Required supporting software:
An editor; one is discussed in the manual but was
not provided with the demo package
MTPascal is required if the libraries are purchased

Memory requirements:
51k of transient program area
> 54k TPA for example application

Diskette capacity required:
300k

Utility programs provided:
Routines to re-cover indices and files with

damaged records are provided
As additional purchase option: MT Pascal

routine libraries and source for the entry and
report routine

Record size & type limits:
125 files max. 255 fields per file
5 indices/file 8M bytes per file
64k records/file 4k bytes per record

as memory size permits!!!!!!

Portability:
should be limited only by media compatibility

User skill level required:
professional skills required for implementation of
applications, operators will require training

System upgrade policy:
none mentioned

TABLE R6
APPLICATION DEVELOPMENT FACILITIES

FUNCTIONAL
PARTS

Completeness and Complexity of Facilities

Little
or None

Some Complete
& Complex

Easily
Complex

Individual Program
Development 1

Input Transactions YES

Data Management 2

Reports & Queries YES

Integrated Systems 3

NOTES
1) The available routine libraries and MTPascal interface make full

and complex programmming available easily.
2) The database management facilities are good , but the data dic-

tionary management is limited.
3) A menu system is provided to integrate applications with.

Organization of larger systems would suffer from lack of a more com-
plete data dictionary system.

Lifelines/The Software Magazine, November 198246

Macros of the Month
Edited by Michael Olf e

New Version Of PMATEHow about a macro which automatically stamps your files
with time, date, version number, and author when they are
created or edited? If you have a hardware clock in your sys-
tem, this month's macro from Bill Norris of Bronx, New York,
will do the job nicely. The header on "IOPATCH.ASM"
listed below was created by this macro. Additionally, the
macro will allow you to call machine-language subroutines
from within PMATE just as you would make CP/M system
calls - by loading a register with the function number, and
calling a single entry point. Mr. Norris has used such calls to
fix a deficiency in PMATE - the lack of access to different user
areas. The "IOPATCH.ASM" below allows saving the cur-
rent user number and setting or restoring it. For example,

6q0 xm ; saves current user # in user variable 1
7q0 xm ; restores current user # from user variable 1
5ql 7q0 xm ; sets current user # to 5

Several interesting features of PMATE are demonstrated by
these macros, namely

Use of "XM" to call an assembly-language subroutine
Use of "@P" to pass parameters to a subroutine
Use of macros as subroutines

Implementing The Time-Date Macros

1. You must have a clock /calendar in the system.
2. Edit "IOPATCH.ASM", inserting a routine to read the

clock/calendar and store a time/date string in memory.
The address of the routine must replace the monitor ad-
dress. The example which fo l lows is for the OKI
MSM5832 chip on the Compupro System Support I
board.

3. Assemble the new "IOPATCH.ASM", overlay the hex file
onto a copy of "PMATE.COM", and save the new
"PMATE.COM". For example:

A> ddt pmate.com
-iiopatch.hex

TC
A > save 91 pmate.com

4. Load the new "PMATE.COM", load the permanent
macros below, delete any leading comments, copy to the
permanent macro area, and test the ".f" macro to be sure
your copy was accurate. If all is well, duplicate PMATE
with "XDPMDATE.COM".

A > pmate
xipermacs.pma$$
a6k
qmc$$
.f$$
Edit : q . c<c r>
< assuming .f worked >
xk$xdpmate.com$xh$$
A>

Version 3.21 of PMATE is now available for CP/M-80,
CP/M-86, PCDOS, and MSDOS. Some of the new features
in this version:

1. Control-S repeats the next keystroke four times or the
number of times which follows.

2. New commands for auto-indent (a la UCSD Pascal
editor):

set auto-indent to cursor column
increment auto-indent by 4 columns
decrement auto-indent by 4 columns
"nQ/" to set auto-indent to column n

3. Direct console I/O, with no instant command translation
on input.

4. Improved configuration. It is no longer necessary to edit
the CNF file if you have one of the terminals on the menu.
There are also ten permanent macros defined as instant
commands in the CNF file.

O=zero O=letter 0
; Fi le ’’IOPATCH.ASM”
; Only relevant parts of file reproduced here
; This i s iopatch for version 3-21, but
; earlier versions should present no problems.

;* Version: 006, Time: 00 :31 :30 , Date: 09 /10 /82 .

;* Program: IOP.ASM Author: Mike Aronson *
;* Modified by: Bill Norris »
;* •
;* 1> Adds general purpose machine lang, interface. *
;* 2> Uses Godbout System Support Board for time/date. *

;THIS VERSION IS FOR MAC (Digital Research)
; and possibly ASM (also D .R .)
; «*««« IMPOSSIBLE WITH M-80 (Microsoft) *****

MACSZ equ 2048 ;SIZE OF PERMANENT MACRO AREA
; note : At least one of following two equates should be 0 .
; Allowable values are 0 or -1 . (Both may be 0)
; The value of setting both to 0 i s that an IOPATCH.HEX
; file may be 'passed around' and used for other console
; types. Just overlay the old PMATE (*** 3 .2x ***) .
MEMMAP equ o ; - I IF MEMORY MAPPED
CRT equ o ; I for terminal
NODEV equ not (MEMMAPor CRT) ; to skip definition
UINIT equ 5239H

; Equates used by Clock routine
cl$bas equ 50h
clkcmd equ cl$bas+10
clkdat equ cl$bas+1 1
bdos equ 5
read equ 10h
hold equ 40h
readho equ read+hold

ORG 109H

;JUMP VECTORS AND USER VARIABLES
UINITL: JMP UINIT ;USER INITIALIZATION
UEXIT: RET ;USER EXIT ROUTINE

NOP
NOP

CI: JMP 0 ; CONSOLE INPUT VECTOR
CSTS: JMP 0 ; CONSOLE STATUS VECTOR
COUT: JMP 0 ;CONSOLE OUTPUT VECTOR

(continued next page)
Lifelines/The Software Magazine, Volume III, Number 6 47

LO: JMP 0 ;LIST VECTOR
LSTS: DB 0 ,0 ,0 ;LIST STATUS VECTOR
MONTR: >P FERJOY ; MONITOR VECTOR now via USER CALL #0.
MONITR equ Oh ; Or the entry point of your monitor.

< part omitted >

i f NODEV
say hey; Assembly for existing terminal definition

ds 67
endif

DB 0

DELAY: DB 100 ; DELAY TIME FOR QD COMMAND
<part omitted>

; FOLLOWING VARIABLES CAN BE SET BY Q COMMANDS
; User variables

UVARO: DW 0 ; Mate stores USER CALL REQUEST # here

UVAR1: DW 0
; Call ir s ; Description of register contents
; o ; Jump to monitor
; b 2 ; Points to Time/Date string
; 3 ; Go to address stored here
; ; Pointer to stringy to copy to UBUFF

- string ends w/*Z, max. length=80 chars
; 5 ; Pointer to location to overwrite from UBUFF

- UBUFF will be copied to text register,
- "Z and a l l , and will be invisible until
- Mate redraws the screen.

UVAR2: DW 0
UVAR3: DW 0
UVAR4: DW 0
UVAR5: DW 0
UVAR6: DW 0
UVAR7: DW 0
UVAR8: DW 0
UVAR9: DW 0

mov d,m
xchg
pchl ; Do i t !

FER$AL: pop b ; Do next
pop d ; stage of
pop h ; parameter

; t e s t , and back
; to Mate.

FER$0 ; Jump to monitor
FER$1 ; Get time
FER$2 ; Get date
FER$3 ; Jump to specified address
FER$4 ; Copy string to here
FER$5 ; Copy string from here
FER$6 ; Save current user #
FER$7 ; Set user #

'em as you see f i t .

($-FERTAB)/2FERNUM equ

;* Get to monitor via 'OqO xm' instead of 'xm' .

FER$0 : jmp MONITR

;* Read time/date, store time a t (UVAR1)

FER$1 :

FER$1A:

call
Ixi
Ihld
mvi
Jmp

CLK$1
d,TIMTAB
UVAR1
b,8
UMOVIT

; Time request
; Time text
; goes here.
; Move this number of bytes
; Do i t .

Get time/date, store date a t (UVAR1)

FER$2: call
lxi
jmp

CLK$1
d,DATTAB
FER$1A

; Date request
; Date from here . . .
; Do i t .

UMOVIT: Idax
mov
inx
inx
dcr
jnz
ret

d
m,a
h
d
b
UMOVIT

; Get byte
; Store i t
J

; More?
; yes
; Done

. *««*»Next instruction is patched to 'RET' *****
I i f System Support board is missing. *****
CLK$1: lxi

lxi
h, OKITAB
d, PMATAB

; Register access table
; Store here for Mate

CLK$2: mov
cpi
jz
cpi
jnc
ori
out
cpi
in
jnz
sui

v
CLK$5
14
CLK$4
READHO
CLKCMD
READHO + 5
CLKDAT
CLK$3
08h

; What ho!
; Time to go?
; Done
; All r eg ' s . < 14
; Print a seperator

; Register request

; Get data

CLK$3: adi 30h ; Binary to ASCII
CLK$4: stax

inx
inx
jmp

d
h
d
CLK$2

; Store in PMATAB
>
>

CLK$5: stax
xra
out
ret

d
a
CLKCMD

; Loop exit
; Take clock
; off hold.

<part omitted>

ORG UINIT

LHLD 06H
< part omitted>

; POINTER TO BEGINNING OF FDOS

in clkdat ; Is System Support board
cpi OFFh ; in the system?
rnz ; Yes, else
mvi a,0C9h ; Wipe out user calls
sta CLK$1 ; numbers 1 and 2.
RET

.I***************************************;
;* INITIAL COMMAND «;
.»»»»**»**»»»»»»»«»»**»#«»»»*»»»»*»»****»;

USRCOM: ; Execute this macro after each BREAK (*C)
;db 'bte xk iThis is my macro$' (Put yours here)
db 0 ; End of macro marker.

;* *
;* Machine language Interface: Gets here via XM command.
.« *

FERJOY: ; Entered via Mate "XM” command
push h
push d
push b

;* The following NUMBERS in OKITAB represent the order in
;* which the OKI data registers will be accessed.
;* The time/date will be written to PMATAB, and eventually
;* will be copied to a Mate text buffer. As Mate is not
;* aware of th i s , the time/date will be invisible until
;* Mate is forced to redraw that part of the display.

UVARO
a,h
0
a , l
FER$AL
FERNUM
h,FER$AL
h

d, 0
e, a
h,FERTAB
d
d
e,m
h

; Mate stores request
; # in user variable 0.
; Allow 255 calls max.
; Param, in A.
; *** Error i f not 0 ***
; defined in table?
; simulate call instruction

; NO, not in table, <cr>, else
; Calculate routine address

g!
 tt

E
! B

O

E
S'

£X

;*HL now points to vector

Lifelines/The Software Magazine, November 198248

OKITAB: db 5, 4, ' : ' , 3, 2, ' : ' , 1, 0
db 10, 9, ' / ' , 8, 7, ' / ' , 12, 11, ' $ '

PMATAB:
TIMTAB: db 'hh:mm:ss z
DATTAB: db 'mm/dd/yy$ '

;* Jump to address via z####q1 3q0 xm z *
;* #### is the address; don ' t forget about your radix. *
;* **** Haven ' t tested for addresses above 32k. **** *

FER$3: Ihld UVAR1 ; Go to this address
pchl ;

Version: 003, Time: 23 :08 :23 , Date: 09 /17 /82 .

;* Program: Permmac Author: Bill Norris
;* Permanent macros for PMATE.
;* Text Registers 8 and 9 reserved for internal use .
;* Also uses : reg. 7, var. 0 ,1 ,2 and user var. 0 ,1 .

;* *F*C updates time/date.
;* ed i t s f i l e , creating/updateing box.
;* displays this box. (PMAC.HLP on current drive)
;* *F"V updates version #, time/date.
; * note :
;* ~F~F or . f must be used first (on real or dummy f i le)
;* in order to be able use *F*A and "F 'B .
;* Version, time and date to be updated is f irst found.
!«««««•«««««««««««»«««»«»«««««»»»»«»««•«««»•««««»»«««»»»««•««>

.ft Copy string to UBUFF

FER$4 : Ihld UVAR1
Ixi d, UBUFF
mvi b, BUFLEN

FER$4A: dcr b
jz FER$4B
mov a,m
stax d
cpi
rz

BUFLAG

inx h
inx d
jmp FER$4A

FER$4B:
5
mvi a, BUFLAG
stax
ret

d

.ft Copy string from UBUFF

FER$5: Ihld UVAR1
Ixi d, UBUFF

FER$5A: Idax d
mov m,a
cpi
rz

BUFLAG

inx h
inx d
jmp FER$5A

ft

; Points to source string
; Destination
; Set limit on max # of

; bytes to move

; Get next byte
; Copy to buffer
; End of string?
; Return i f yes, else

*Xc ; update t ime, redraw screen

.s 01 qr

j , ,Xf ; open or create file with version/time/date header
; Get next character

; Bad news i f here . . .
; Try to recover
; Oh, we l l . . .

*

; Get destination
; Source

; Fetch i t
; Ditch i t
; Check i t
; Stop i t
; Bump i t
; Bump i t
; Do i t

b9k b9e iEdit f i l e : $bte ; prompt for filename
[g"A09$ @k=1 3_ b9e ;
0k=127[-d] [0k i] ; get filename
bte

]
b9e a s : $-k ; strip prompt
bte 0f~A09$v1 ; i s fi le new?
xf"A09$; open file
@1JJ ; skip prompt i f file exists

:a gAsm=0, M80=1, C or PL/ I=2 , Pascal=3, 0ther=4. - Select : $
0k-48v1

01>4ja 01<Oja

01=0 ' j0
”;v1 0v2

:0 01 =1 ' j b
" ;v1" V2

:b 01=2 ' j c
”/v1 ”/v2

:c 01=3 ' j d
"(v1 ”)v2

:d 01=4 ' j e
” v1" v2

:e b9k b9e 72qh
8m 01r 62 [r*$]

02r 13i
b8k b8e 8qh
z 01i i*$
60qh z i*$
02i 13i bte
.z .v
01=32 ' j f
a31 14m 2n j j

:f 21 14m rProgram:$
23m r Author: auth. name $

01 s : $ r*A07$ 1 14m 2n

: j b9c -1 b8c b8e as»$60d
60qh bte .v a0g$

; loop i f out of range

; i f not asm, jmp to 0
; else comment
; - characters = ” ; " , ,
; i f not M80, jmp to b
; else comment
; - characters = ”
; i f not C or PL / I , jmp to c
; else comment
; - characters = " / ” , " / "
; i f not Pascal, jmp to d
; else comment
; - characters = " (" , ") "
; i f not Other, jmp to e
; else comment
; - characters = " ’’
; insert spaces for header
; first comment character, row
; second comment character
; insert space for time
; comment out
; body of header
; finish
; insert vers/time/date/author
; i f comment char = ” " , jmp to f
; go to overwrite, jmp to j
; replace spaces
; put your name here
; position cursor, go to
; - overwrite mode
; take out old time/date
; replace with new

UBUFF: db BUFLAG ; End of string mark (*Z)
ds 80 ; Waste a byte

BUFLEN equ $-UBUFF ;
BUFLAG equ 26 ; ~Z

.« Save current USER number . *

FER$6 : mvi e,0FFh j
mvi c ,32 j
call 5 ; Get #
sta USERHO ; Put i t
ret

. « Change USER number to new or previous value. *

FER$7: Ihld UVAR1
mov a , l
cpi OFFh •
cz FER$7B ; Wants to restore old user #
mov e ,a •
mvi c ,32 ; Set new number
jmp 5 ; Do i t

FER$7B: Ida USERHO ; Old user #
ret 5

USERHO: db 0

KEYTB:
; — Move to top < --------
db 128, 'A ' -40h , 0, 0;

i >>>>> * I) ’ ’ ? , ,Xs ; Insert time and date
55 55555555 j j 5555 5 55 55 » » » 55 ; j 55 55 55555555 » » » 55 55 » > ; 55 55 55 55
01 st ime: $. t sdate: $.u

Remainder omitted>

db OFFH ;END OF TABLE x j , ,Xt ; call #1 — time

0Pv9 09q1 ; give assembly-language routine
; address of time string

1q0 xm ; set cal l # to 1 , do call

(continued next page)

;END OF EDITOR
EDEND: db 0

END

Lifelines /The Software Magazine, Volume III, Number 6
49

"Xu ; call #2 — date ”0v1 1v0 jl
:k @0+48v1 OvO
:1 @1r -m

0Pv9 @9q1

2q0 xm

; give assembly-language routine
; address of time string
; set call # to 2, do call

X» 111 1 in i , , 1 1 1 1 n 1 1

Xz ; put labels into box

n . increment version number
b9g b8g b9g 4[b8g] b9g 131 -91

s* $
rVersion: 000, Time:
02=0[01 d rsay hey$

2[s,$d] s.$k
13ild

]
-21.s

; insert lines
; find place

, Date: .$
; replace spaces
; force listing for ASM files
; clean up

; insert time/date

01s: $ 3m 1v0 ; find place

3[.x] Ol.c ; increment with carry

» , 1 11111111111111 111111111111 1 i i 1 1 1 1111 1 1111 1 1 1 1 1 ,

Xx ; increment number under cursor with carry

i t mmnMMMMMnnnMnMnni i i iMmMM i i jm l i l i i

H-m gt-48+£0v0 e0<10jk ; increment number under cursor

Oto '3D GCfiSB B3D3B

OIL

CuTf \ CJRcue CCATOf

PLACE |M JACKETED SEAL

DRILL
HOLE fog
SPmDLE

7

-Ci

PflWlT 6lf£X

floppy
l&LftKopeMIN& foR PtfliyCoRiTE Aero

BOTH &UDC5

k _______________________

iRMX Users Group
Anne Odden
The National iRMX Users Group has been formed, spon-
sored by Intel and Lifeboat Associates, who have helped
the group establish a solid foundation of interest and
financial backing.

One objective of The National iRMX Users Group is to
publish a newsletter which will provide useful information
to the iRMX system user. This publication is called Human
Interface and will appear quarterly. The iRMX Users
Group has also established its software library in New
York City. The library will offer members and iRMX
system users various volumes for a nominal fee. The
library will begin taking orders in late November.

Membership charges in iRUG (iRMX Users Group) may
be either a corporate fee of $50.00 or an individual fee of

$10.00. All members receive the newsletter, which is
available only to members. Library diskettes are available
to members and the public for $15.00. Memberships must
be renewed annually. (The corporate membership in-
cludes a discount on software.) All orders must be prepaid
by check, VISA, MasterCard or American Express.

Since the introduction of the iRMX operating system,
many local users groups have formed. Two such groups
are located in Texas and Wisconsin. Those interested in
forming a local N.Y. Metropolitan area iRMX Users
Group, please call Lifeboat Associates at (212) 860-0300,
ext. 350.

By November iRUG expects to have complete information
available; if you wish to receive material describing iRUG
and its services, please call or send your address to The
iRMX Users Group, 1651 Third Avenue, New York, N.Y.
10028.

Lifelines/The Software Magazine, November 1982
50

Improvements In Pascal/MT+ Version 5.5
Reported by Al Bloch

pg. 211 with AMD 9511, one must
also still link FPREALS/S before
PASLIB. AMDIO, FPRTNS,
REALIO and TRANS9511 must be
on the logged-in drive.
SPP Manual Addendum, pp. 4 & 5.
[addr (sb __ out __ch] at bottom and
top lines need a ')' before ']' twice.
User must also delete (*$K7*) at
head of NSB.SRC to implement this
patch.

3- If your LINKMT dies on a HP-125
after a seemingly successful link, just
when it's ready to write the output to
disk, talk to HP about an updated
version of BIOS for their CP/M;
early 1.1's had this problem.

4- Assembly code .REL files produced
by RMAC or MACRO-80 may be
linked into MT + program by sim-
ply RENaming them to .ERL.

This full ISO standard implementation
of the popular Pascal programming
language is loaded with additional fea-
tures, such as very friendly editing and
pre-compile error-checking environ-
ment, along with practical extensions,
including in-line assembly code, modu-
lar compilation, overlays, bit and byte
manipulation, and string and file han-
dling commands. Since its release in
late 1981, user experience has eluci-
dated several corrections and patches
to the distributed code; while not war-
ranting a new version release (which
would require updating), they add con-
siderably to convenience and accuracy
of use.

First, in implementing the Speed Pro-
gramming package (SPP - the editor,
syntax checker and precompiler), the
user must insert into the file NSB.SRC
appropriate Pascal code to generate the
cursor-handling commands required
by his or her CRT. NSB.SRC calls as
an INCLUDE file another source listing
on the distribution diskette, EDTYPES-
SRC, which contains standardized
CONSTANT and TYPE declarations,
quite a few of which are not required
for SPP use. The impact of this is
minimal on 64K machines, but prohibi-
tive in a 56K environment, where the
unnecessary swelling of the symbol
table renders NSB uncompilable.

A simple correction is to comment out
the unused constants in EDTYPES.-
SRC before compiling NSB, as follows
(parenthetical comments are mine):

CONST
(*XINSRT=O

... (ano the r 32 l i ne s)
CHINS=$1A; {Z} *)
ESC =$1B; (leave this in)

(* QUIT =$FE;... *)
CMDSZ=23; (leave this in)

(* LF =$0A;
... (ano the r 6 l i ne s)
F1RSTLINE=O *)
STRLEN =30;
(this one, and
the following,
are all required)

Next, a series of patches have been
defined to correct various discrepan-
cies and system dependences, of vari-
ous sizes and complexities. The details

are available from Digital Research and
their dealers; the list in Figure 1 outlines
what they're good for.

Miscellaneous new lessons:

1- PLINK II users can link Pascal MT +
.ERL files, by adding the following
code to the MAIN module:

CONST @xxxx1= $103;
&xxxx2 = 0;

(A similar patch for Pascal/Z was
noted in Lifelines, July 1982.) These
two variables are initialized ordinarily
only by MT + 's own overlay handler.

2- Documentation typos:
pg. 68 Demo prog. IF line contains a
proper ')' which is missing from the
file on disk;

Figure 1

PATCH # PROBLEM SOLVED
01 PASTEMP.TOK under 1.4

CP/M
02 File Name Syntax under 1.4

CP/M
03 Error #4 in INLINE assembly us-

ing JMP(* +n)or(*-n)
04 EXP(-n) shouldn't equal EXP(n)
05 Source in FIBDEF.LIB,RNB.SRC

and ATWNB.SRC does not com-
pile to match code in
PASLIB.ERL

06 Formatted string output off by
one in size (too short)

07 @OVS in PASLIB.ERL can't find
overlays on drives other than
logged-in one.

08 SPP DIR function under 1.4
CP/M

09 /X switch for overlays didn't
work

10 "invalid opcode" in compile
phase 2, with deeply nested IF-
THEN-ELSE or large CASE
statement; hardware stack
overflow.

METHOD

ddt MTPLUS.000, 1 byte

ddt LINKMT.COM, 1 byte

ddt MTPLUS.COM, 3 instrux
ddt TRANCEND.ERL, 17 bytes

4 pages of new source code

16 line new source code

ddt PASLIB.ERL, 2 bytes

2 pages of new source code

ddt LINKMT.COM, 1 byte

ddt MTPLUS.000, 1 instrux

Notes: CDOS, MUON and CP/Ms on Cromemco hardware are treated as 1.4
CP/M. Patch 6 does not resolve surprises in printing floating point format; this
one is still under study by the authors.

Lifelines/The Software Magazine, Volume III, Number 6 51

PAN KL Overview
Jethro Wright III

panel (screen layout) via a series of pre-defined subroutines
that perform almost every desired function in a conventional
transaction. In addition, PANEL comes with alternative pro-
grams that take the place of user-written applications pro-
grams when the requirements of these tasks are less sophisti-
cated. These programs can capture data from the screen as
well as manipulate large collections of data already stored in
a file.

Not only will we be offering a penetrating review of this ex-
citing product, but we will also have examples of what it
takes to make it all work, in the form of a simple application
program.

Watch for it.

In an upcoming issue of Lifelines, we will present an in-depth
review of the PANEL data entry design system, as part of our
continuing series of Applications Development Software.
PANEL comes from Roundhill Computer Systems Limited,
distributed exclusively by Lifeboat Associates.

As mentioned above, PANEL is a system of interative pro-
grams that facilitates the transfer of information to and from
a CRT terminal and/or a conventional data base. However,
unlike similar tools in the marketplace today (including those
programs previously reviewed in Lifelines), PANEL is not
'wired into" a single language — proprietary or otherwise —
but can be used with COBOL-80, Pascal/MT+, or PL/I-80.
The programmer /designer interfaces his/her program to a

Attention Dealers!
There are a lot of reasons why you should be carrying Lif elines/The Soft-
ware Magazine in your store. To provide the fullest possible service to
your customers, you must make this unique pubheation available. It will
keep them up to date on the changing world of software: on updates, new
products, and techniques that will help them use the packages you sell.
Lifelines can back up the guidance you give your customers, with solid
facts on the capabilities of different products and their suitability to a
variety of situations. Now we can also offer you an index of all back
issues of Lifelines, opening up a full library of information for you and
your customers.

For information on our dealer package, call (212) 722-1700, or write to
Lifelines Dealer Dept., 1651 Third Ave., New York, N.Y. 10028.

52 Lifelines/The Software Magazine, November 1982

Product Status
Reports

features, program execution and de-
bug, and nested source file loading.

The 4th language is designed to pro-
duce full structured code and data; it is
highly modular and claims to encour-
age top-down design with bottom up
coding. Single and double precision in-
tegers, booleans, strings, arrays and
records are supported.
The assembler features 8080 mnemon-
ics. Also included with the package are
an editor, a tracer/debugger and a
cross-compiler. The debugger permits
run-time stack display and interactive
patching of previously compiled code.
It can decompile and disassemble all
4th language code. The cross-compiler
allows generation of ROMable code
and produces compact COM files.

48K RAM and CP/M-80 are required
for this product . Price: $89.95

LAZYCODER SCREEN
Nelson Data Resources, Inc.
This presentation development aid al-
lows the design of images or data entry
screens and includes thirty-five design
functions. A screen can be printed,
saved for data entry, incorporated into
a series of such displays, or filed with a
filing system option. Price: $125

Mail Track I
Sapana Micro Software
This mail processing package stores
110 labels on a single-sided floppy and
2200 on a double-sided disk. The mail
list remains in Zip code order as infor-
mation is entered, and duplicate entries
are flagged. Searches can be executed
using any of the seven fields provided.
Foreign entries are supported.

Labels can be printed one, two, three or
four across. Entries can be moved from
one file to another, edited.

64K, one drive, PC-DOS and a printer
are required. Price: $29

Manufacturing Resources Planning
System, encompassing manufacturing
controls from sales department fore-
casts through production.
The inventory control module per-
forms standard functions and also pro-
vides bill of materials processing and
job tracking. Product structures for
assembled items are maintained and
gross material requirements reports
produced; part usage is tracked. Four
costing methods are supported.

Sales order entry and purchase order
entry modules tie in with accounts
receivable and accounts payable.
Written in PL/I-80 and utilizing Access
Manager for file handling, these mod-
ules run under CP/M-80 or MP/M-80.
Pricing information is not yet available.

The products described below are
available from their authors, computer
stores, software publishers and distrib-
utors. Information has been derived
from material supplied by the authors
or their agents, and Lifelines/ The Soft-
ware Magazine can assume no respon-
sibility for its veracity. Software of in-
terest to our readers will be tested and
reviewed in depth at a later date.

New

Products
COMPress

Digital Marketing
This program may reduce archival
storage requirements by 30-40 % , using
a technique of byte-to-byte encoding.
Shorter bit codes are assigned to more
frequent characters and longer codes to
less frequent ones. Data can be com-
pressed without loss of data, allowing
faster transmission for communica-
tions. COMPress works with ASCII
and non-ASCII files. The program re-
quires CP/M-80. Price: $59.95

Expense Track

Sapana Micro Software
This program keeps track of expenses
throughout the year and at tax filing
time; it is appropriate for home and
small business use. Seven fields for data
entry are provided: date, description,
category (1-99), method of payment,
tax status, and amount. Almost 2500
expense entries can be stored on a
single-sided floppy. Entries can be de-
leted or modified. 64K, an 80-column
display, one drive, PC-DOS and a
printer are required . Price: $29

POWER

COMPUTING!
This multi-utility program is a menu-
controlled interface for CP/M-80. Files
are listed on a screen menu and manip-
ulated using numbers which POWER
assigns to them. A reclaim function al-
lows the user to restore accidentally
erased files; a separate disk test feature
permits bad sectors to be gathered into
a special invisible file.

Fifty housekeeping programs are in-
cluded in the package, which occupies
12K. Monitor commands read and write
to any selected track or sector from any
location in memory. POWER permits a
user to fill memory, move memory and
single step in any direction, entering
ASCII, hexadecimal, decimal or binary
code. Memory can be searched using
wildcards. Programs can be executed in
any memory location.

CP /M is required . Price: $149

Super Generator /Super Indexer

Winsoft
These packages can be used together, or
may be purchased and used indepen-
dently. They are designed for the pro-
duction and maintenance of profes-
sional documentation. The Report
Generator adds title page, table of con-
tents, list of figures and tables, revision
list, section numbering (to seven

(continued next page)

4th
Manufacturing Control System
Microcomputer Consultants
Consisting of several smaller indepen-
dent packages, this product is designed
to address individual manufacturers'
particular needs. The packages form a

United Controls Corporation
This compact interactive package is in-
tended to provide a full software devel-
opment environment. It includes a
command line interpreter with a calcu-
lator mode, assembly and compilation

Lifelines/The Software Magazine, Volume III, Number 6 53

levels), section relative or global pagi-
nation, three kinds of heading, four
kinds of margins, visible page borders,
lettered appendices, and fifty other
features. Some of these include multi-
ple text columnization, text width ex-
pansion and contraction, right justifi-
cation, two types of footnotes, and
table heading carryover.

The Super Indexer utilizes words speci-
fied in a list or parametrically for index-
ing. Dehyphenation is automatic and
other features include: indexing in ex-
act case or not, indexing of word vari-
ants under a single entry, and referenc-
ing of one index entry by another.

The system is available for CP/M-80,
IBM PC DOS, UCSD Pascal, and other
computers. The Indexer and Report
Generator are priced at $600, or $1100
for both; manuals cost $25 each, appli-
cable towards the purchase price.

TCW/DMS

The Computer Workshop
This data management system is de-
signed for users with little technical
knowledge.Twenty programs and three
levels of complexity are included.

The number of possible files is limited
only by disk capacity; twenty-fourfields
are permitted per file. Each field may
be alphabetical, numeric, or a date.
Length and decimal points may be spe-
cified for numeric fields; length may be
specified for alphabetic fields. An index
key allows quick record location; if a
key is specified, a hash code location
technique is implemented. Field specifi-
cations may be saved for future use.

A field to be computed may be speci-
fied. Formulae for computed fields may
contain names of variables, constants,
*, /, = , + and minus, along with
parentheses to indicate precedence. In-
dex keys can be updated automatically.
Information from the previous record
may be repeated during entry.

Numeric fields are checked for proper
content. Add or subtract operations
can be used to increase or decrease
amounts in numeric fields, and com-
puted fields are automatically updated.

Deleted records remain until a file is
compressed, and can be restored. The
compress function also automatically
makes a backup copy of the data file.

Records can be located by value, posi-
tion or index key. Up to twenty-four
keys can be specified for sorting on, in

ascending or descending sequence.
Compressed files can be re-sorted.

The user may, at the middle complexity
level of TCW/DMS, format reports,
citing headings, fields, captions, totals,
etc. Files can be converted into stan-
dard sequential format with commas
between fields, and back to TCW for-
mat. At this level a query language can
be utilized, as can the X-Y plotting
capability of the product. Simple statis-
tics are supported; maximum, mini-
mum, sum, count, average, variance
and standard deviation of numeric
fields can be computed.

At the third and highest level of com-
plexity, two files can be merged into a
third when keys between them match,
creating a new file with selected infor-
mation from both input files. The num-
ber length, type name or position of
fields can be changed, and fields may
be added or deleted.

At this level the user can employ a pre-
processor so that BASIC programs can
access TCW/DMS files. Symbolic field
names in a data file can be treated as
variables. Input /output operations are
supported to facilitate the interaction
with the user's BASIC programs.

File linkage features link records from
different files; records are related hier-
archically through values in fields.
There are no imbedded pointers within
the records, and a program is supplied
to allow navigation through the linked
structure.

TCW/DMS requires 64K of memory,
IBM PC DOS, IBM PC BASIC, two
drives, a printer, and a monitor.

TE100 Terminal Emulator

Persoft, Inc.
This product emulates most features of
DEC VT52, VT100, VT101, or VT102
terminals, allowing an IBM PC to func-
tion as these terminals do. Setup mode,
character attributes, line and character
insert and delete, and modification of
terminal characteristics from the host
system are supported.

The baud rate ranges from 75 to 9600;
the screen format supports 24 by 80
lines, with a twenty-fifth line for status
and indicator light display. US or Euro-
pean ASCII character sets and line
drawing graphics are featured, along
with split and reverse screen functions,
bold, blinking and underline. The nu-
meric /function pad is controlled by the

host computer.

Local or remote applications (via mo-
dem) are supported, along with a local
echo option and local printer support.

An IBM PC with one disk drive, an
asynchronous I/O board with cables,
MS DOS and 64K of memory are re-
quired. Price: $125

Z80 Relocating Macroassembler

2500 AD Software, Inc.
This package includes a linker which
will link over four hundred files, along
with an 8080 to Z80 Source Code Con-
verter. Files can be as large as the user's
disk storage space, because buffers
may overflow to the disk. The program
also assembles files with nested macros
to an unlimited number of levels.

Command line or self prompted invo-
cation is supported as are all Zilog
mnemonics, syntax and directives.
Listing options include Pass One only,
terminal only, or printer only; sections
of code can be listed during assembly.

Price: $49.50

New

Versions
This month the following products
have been updated to the version num-
bers noted. We hope to have more in-
formation on these updates next month .
ASCOM/86 2.10
FABS-II 4.17
MATH* 3.044
MATH-PC 3.0
T.I.M. Ill PC 3.20
The new version of T.I.M. is compiled.
See Macros of the Month for news on
PMATE updates. This issue also in-
cludes a Software Note on the latest
version of Pascal MT/ + . Below is
described a new version about which
we have received detailed information.

Lattice 8086/8088 C Compiler ______
Version 1.01
The source for the basic console I/O
function has been supplied, and may be
customized by the user to suit individ-
ual needs. In addition the source for the
function extract utility is included,
along with three new macros.

A special compile time option has been
added to the compiler's first phase; this

Lifelines/The Software Magazine, November 1982
54

Something New
When you can’t find your problem,
let ACTIVE TRACE show it to you!
See inside your program as it’s
working! Just as important, see
inside your program when it’s not
quite working!
New to Basic? ACTIVE TRACE will let you
see what Basic does as it does it! ACTIVE
TRACE displays the line number, name,
and current value ot the variables and
functions you choose, as they are
encountered in program flow.

Something Old
Though less exciting than harnessing the
power and speed of your computer to find
mistakes, using your computer to avoid
mistakes in the first place is equally
valuable. Cross-reference utilities have
been around for a long time. Most
programmers would not attempt to work
without them, and we don’t know why they
have not become more well known and
understood among Basic programmers and
educators. ACTIVE TRACE produces
complete cross-reference maps and
explains their use and importance.

Active Trace

others to study and to apply. Principles
and concepts of the BASIC language
are presented with such a smooth coor-
dination that the usual difficulties -
first trying to learn definitions and new
terminology, then trying to appreciate
the significance of concepts, attempt-
ing to translate all such new material
into actual business applications pro-
grams that work,endeavoring to achieve
a user-friendly, interactive, well-for-
matted program, etc. - are avoided.
That the author believes in and prac-
tices taking a high road of understand-
ing rather than adopting the often-fol-
lowed hacker's approach is supported
by the lack of programming shortcuts.
Elegance of solution shines through in
the end, however. The author concen-
trates on providing supporting mate-
rial that illustrates fundamentals and
interrelationships among BASIC's re-
served words, control structures, pro-
gram structure, formatting, etc.

The complete BASIC business applica-
tions programs cited in each chapter do
testify to the fact that the approach
used does result in direct solutions to
problems of the everyday business
world. Similarities and differences be-
tween BASIC and other popular lan-
guages, such as COBOL, Pascal, and
FORTRAN, are included in each of the
seven chapters of the 223-page 7" x 9"
softcover book. In fact, Appendix B
gives complete programs in each of
these languages so that you can directly
compare a given program with the cor-
responding one already presented us-
ing the BASIC language.
Among the numerous programs pre-
sented in the book are Cost of Goods
Sold, Comparative Income Statement,
Discount Factors, Improved Annuity,
Depreciation, Present Value of a Depre-
ciation, Cost-Volume-Profit Analysis,
and Break-Even Point.
Written for the business professional,
this book should aid any reader to
read, write, and to "debug" BASIC
programs. And, after all, learning by
doing is the principal way to find out
what a computer (and you) can do.

option allows a drive other than A: to
be specified when a program is com-
piled. The "kbhit" function has also
been added. It returns zero if a charac-
ter has not been typed at the keyboard
and non-zero if a character is pending;
this action is opposite to that described
in the manual.
Initializer expressions for declarations
forced to 'extern" status by the -x op-
tion are now ignored, instead of being
flagged as errors. If the first phase of
the compile processes an input file
which doesn't declare any functions or
data, a message will be generated and
execution terminated; the .Q file will be
deleted.
The library routines which process the
read and write functions for disk files
now obtain the disk blocking factor
from the the external location, instead
of always using a default value of 128.
Block values of 256, 512, and 1024 now
will also be supported, and the block
value should be defined by initializa-
tion.
The "rstmem"function has been changed
so that only allocations made after a
call to "allmem" are affected, letting
programmers make a certain number
of initial "sbrk" or "getmem" calls and
then initialize a memory pool by calling
"allmem". The restriction that "rst-
mem" cannot be called if any files are
open no longer applies unless the files
were opened after the first call to
"allmem".
The "clrerr" function now clears the
end of file flag.
Programmers may now create .EXE
files which can be converted to .COM
files using the EXE2BIN utility imple-
mented in recent versions of MS DOS.
The program must be linked according
to directions supplied in a manual ad-
dendum incorporating this update.

Books

If you have great intuition and are well-
disciplined, then you’ll want ACTIVE
TRACE. But if you’re like the rest of us,
you need ACTIVE TRACE to:
■Understand and modify programs you

did not write
■improve your programming skills
■minimize program development time

$125.00
complete with primer to help you use

ACTIVE TRACE to improve your
programming.

Why pay more for cross-reference utilities
alone when you can have ACTIVE TRACE,
the new easy to use programming
environment for the Microsoft family of
Basic interpreters.

SOFTWARE
DIGIML/VMRKETING
DIGIT/t/l/WPKETING™

Reviewed by Raymond Sonoff
BASIC for Business
Douglas Hergert
SYBEX, Inc. 1982
Berkeley, California
This is a most PRACTICAL book on
learning BASIC language. Mr. Hergert
has created a model of exposition for

DIGITAL MARKETING CORPORATION
2670 CHERRY LANE • WALNUT CREEK • CALIFORNIA • 94596

(415) 938-2880 • Telex 17-1852 (DIGMKTG WNCK)

ACTIVE TRACE is a Trademark of The Data Works

(continued next page)
55Lifelines/The Software Magazine, Volume III, Number 6

Tips & Techniques
Wells Brimhall of Phoenix, AZ has sent in this routine. STA UCASE ;toggle upper case flag

;Convert character to upper case if UCASE is TRUE

ADMIN2: LDA UCASE
ORA A
MOV A,C ;A=input character
JZ ADMIN3 ;JMP if UCASE is 0
CPI 61H ;6lH=lower case A
JC ADMIN3 ;JMP if character < lower case A
CPI 7BH ;7BH= lower case Z + 1
JNC ADMIN3 ;JMP if character > lower case Z
ANI 5FH ;convert to upper case

;Swap RUBOUT and UNDERLINE

ADMIN3: CPI RUBOUT
JNZ ADMIN4 ;JMP if not RUBOUT
MVI A,ULINE ;change RUBOUT TO UNDERLINE
RET

ADMIN4: CPI ULINE
RNZ ;RET if not UNDERLINE
MVI A,RUBOUT ;change UNDERLINE to RUBOUT
RET

UCASE: DB TRUE ;upper case flag, TRUE=upper case

END

Here's a handy program for use with Pascal MT + , from
Dave Miller of Mein Software in Salem, N.H.

"Anyone who has used an ADM-3A CRT with the lower case
option has most likely cursed Lear Siegler for not including a
shift lock key. There is a lower case disable switch on the main
PC board, but it is a real pain to switch it back and forth when
editing a file. After spending some time trying to convert one
of the less used keys to a shift lock through hardware, I real-
ized that it can be done very simply with software. This short
routine must be installed in your CP/M BIOS CRT driver. It
translates the key of your choice to upper case lock.

With this routine the CRT will always boot up in the upper
case mode, and all alpha characters will be converted to up-
per case. When you press the shift lock key the keyboard will
return to the normal upper /lower case mode. Each time the
shift lock key is pressed the keyboard will toggle back and
forth between upper case only and upper /lower case. To
enter the ASCII code for the key that shift lock replaced, sim-
ply press the key twice. After a few tries I decided that the
backslash key works best. It is located in the right place and is
seldom used. A control character could also be used, but two
fingers can be quite inconvenient. This routine also swaps
rubout and underline so you don't have to use the shift key to
rub out mistakes.

To implement this routine in your BIOS you must:
1- Add the routine.
2- Change your present CRTIN entry point to route CRT in-
put calls through ADMIN instead of your old CRT input
driver.
3- Change the two CRTIN calls in this routine to call what-
ever your old CRT input driver is labeled. Your old driver is
still used without modification.

I have only done this on my ADM-3A CRT, but the tech-
nique should work for any type of terminal that needs a shift
lock key."

Input Driver
O=zero O=letter 0
; + + + ADMIN + + +

;Input driver for LEAR SIEGLER ADM-3A CRT

;A shift lock character is supported (SLOCK). All lower case
;letters typed after a shift lock will be converted to upper

;case until the next shift lock is typed. Typing 2 successive

;shift locks will cause the shift lock character to be input.

;UNDERLINE and RUBOUT are swapped so it is not necessary to

;use the shift key for RUBOUT.

The SPP buffer RECOVER program is used when a BDOS or
BIOS error occurs while writing the SPP buffer to disk
(caused by write protected disk, failure to warm boot when
changing disks, or a myriad of other obscure and existential
reasons) seemingly destroying the buffer contents. Actually,
the buffer contents are still in memory and can be recovered
using DDT through a tedious 'and error prone process. The
RECOVER program is designed to simplify recovery.

The program should be compiled under MT + and linked
with PASLIB/S to create the RECOVER.COM file. To use:
after the system crashes in SPP, insert the disk with
RECOVER.COM and execute and warm boot (<ctr l>C).
RUN RECOVER and follow the prompts to recover the buf-
fer contents and write them to a temporary file which can
then be checked to make sure no damage has been done to the
file contents.

Recover Source Listing
TYPE B:RECOVER.SRC

(*$Z $9FFF*)

(* 8/13/1982 D. Miller, Klein Associates, Salem, NH 03079 *)

PROGRAM RecoverSppBuffer;

VAR OUTFILE:FILE OF CHAR;
TEXTBUFF:ABSOLUTE [$A000] ARRAY[O..O] OF CHAR;
RESULT,1:INTEGER;
NAME:STRING;

BEGIN
WRITELN(This program attempts to save the contents of the SPP);

WRITELN('buffer when a BDOS error crashes the system.);

WRITELN;
WRITELNl The buffer contents start at $A000 and end with a 4>1A char.)

WRITELNl' (examinable using DDT));
WRITELN;
WRITELN;('Enter the name of the temporary file you wish to save to:);

WRITELNl (form: [d:] filename.ext));
READLN(NAME):
ASSIGN(OUTFILE,NAME);
REWRITE(OUTFILE);
IF I0RESULT=225

THEN
WRITELN('Error creating ',NAME,' file.')

ELSE
BEGIN

REPEAt
I:=1+1;
OUTFILE :=TEXTBUFF[1];
PUT(OUTFILE):

UNTIL TEXTBUFF[I]=CHR(26); (*<ctrl> Z EOF CHAR *)
CLOSE(OUTFILE,RESULT);
IF RESULT=255 , ,

THEN WRITELN(Error closing ,NAtyE, file.)
ELSE WRITELN('Process completed.);

EXTRN CRTIN

TRUE
SLOCK
RUBOUT
ULINE

EQU OFFH
EQU 1CH
EQU 7FH
EQU 5FH

;shift lock character, '\'
;ASCII RUBOUT
;ASCII UNDERLINE

ADMIN: CALL CRTIN ;get character from regular routine

;Process shift lock character

MOV C.A
CPI SLOCK
JNZ ADMIN2

;save input character in C

;JMP if not shift lock

;Shift lock was input, if the next character is
;another shift lock then return it to the program,
;otherwise toggle the upper case flag byte.

ADMIN 1: CALL CRTIN ;get another character
CPI SLOCK ;2nd shift lock?
RZ ;RET if 2 successive shift locks

MOV C.A ;save 2nd character in C
LDA UCASE
CMA

Lifelines /The Software Magazine, November 1982
56

(continued from page 28)
DCR
CPI
JZ
CPI
JZ
CPI
JZ

SETILST:
STC
CMC
MOV
RAR
RAR
RAR
MOV
MOV
ANI
ORA
JMP

SETICON:
MOV
ANI
ORA
JMP

SETIRDR:
STC
CMC
MOV
RAL
RAL
MOV
MOV
ANI
ORA
JMP

SET1PUN:
STC
CMC
MOV
RAL
RAL
RAL
RAL
MOV
MOV
ANI
ORA
MOV
MVI
CALL
RET

A ; convert to pure binary
0
SETICON ; set console

SETIRDR ; set reader
2
SET1PUN ; se t punch

SETI3:

LXI H, PFCBX
MVI B,24

INIT3: MVI M,0
INX H
DCR B
JNZ INIT3
RET

; convert the character in ACC to uppercase i f i t i s
; lower case let ter; clear carry

A, B ; phys . device

; rotate l i s t device into place
; one more to pass carry

B, A
; recover IOBYTE

03FH ; remove old l is t assignments
B ; combine with new
SETI3

A,C ; recover IOBYTE
OFCH ; remove the old console
B ; combine with the new
SETI3

UCASE: CPI ' a '
RC
CPI ' z '+1
RNC
ANI 5FH
RET

; print str ing pointed to by DE regis ter . String must be

PSTRING:
MVI C.PRTBUF
JMP BDOS

; send a CR, LF to the Console; clear carry
A, B ; phys . device

; rotate to reader position
B, A
A,C
0F3H ; remove old reader
B ; combine with new
SETI3

CRLF: LXI D,CRLFMSG
JMP PSTRING

;data areas

t ab , t ab , z IOBYTE Control U t i l i t y , Version 1 .0 ' , c r , l f
t ab , t ab , z Written by Thomas N. h i l i ' . c r . I f
t ab , t ab . ’ ‘ ' *
'COMMAND MENU:
t ab , 'WHERE

tab/wHAT
cr , i f
t ab , 'SET
c r , l f
t ab . DEFINE
or , i f
t ab , <CR>
cr , l f , ' $ '
CR ,LF , '— >$ '

Written by Thomas N. mx i , c r - , x j
June 20, 19b2 ' , c r , l f , l f , l f

, c r , l f , l f
Displays current IOBYTE device assignments '

Displays available IOBYTE assignment opt ions '

Allows user to alter IOBYTE se t t ings '

user to define IOBYTE device names'

a t prompt returns to CP/M. '

Allows

RETURN

OPNMSG:

MENU:

DB
db
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

; clear carry
A,B ; phys . device

; position a t punch field
B, A
A.C
OCFH ; out wi th the old ,
B ; in with the new.
E,A
C. SETIOB
BDOS ; set new IOBYTE

PROMPT:

'Save new defini t ions or return to menu (Y /N/R)? '
CR , LF , $
z Console i s currently assigned to — > $ '
z Reader i s currently assigned to — > $ '
zPunch i s currently assigned to -------> s '
'Lis t i s currently assigned to ---------> $ '
z CONSOLE may be assigned to : ' , c r . I f , ' s '
z READER may be assigned to : , c r . l f , $
zPUNCh may be assigned to : ' , c r , l f , S
z LIST may be assigned to : , c r , i f> $
Enter number of logical dev ice : , c r , l f

t ab , 1. CONSOLE , c r , I f
t ab , 2 . READER', c r , I f
t ab , ' 3 . PUNCH ' , c r , I f
t ab , 4 . L IST ' , c r , I f , I f , ' s '

Current assignments zare : ' , c r , I f , ' $ '
Change to -> ' , ' i '

b e l l , 'Name as entered i s too long , make < 24 cha r s . '
c r . l f , $ '
BELL, OPEN OR CLOSE ERROR DURING PROGRAM UPDATING. ' ,CR ,LF , '$ '
BELL, 'DISK WRITE ERROR DURING PROGRAM UPDATE. ' ,CR ,LF , '$ '

Enter the number of the new 1/0 dev i ce :
bell , ' Invalid Command, please re-enter from the Menu . '
c r , l f , s DS

DB
DS
DB
DS

20
UP1:S

20
UP2:S

20

PUP1:

SAVEMSG:DB
CRLFMSG:DB
CONSOLE :DB
READER: DB
PUNCH: DB
LIST: DB
C0NMSG1:DB
RDRMSG1:DB
PNCMSG1:DB
LSTMSG1:DB
DEFWHAT:DB

DB
DB
DB
DB
DB
DB
DB
DB

DSKERRO:DB
DSKERR1:DB
SELASK: DB
CERMSG: DB

DB

CURMSG:
CHANGE:
TOOBIG:

' 0 ' ; make to binary
A ; adjust for range

; times 2
PSW
E,A ; f i r s t , find proper
D, 0 : logical device name
H.LOGDEV
D
E, M
H
D.M
PSTRING ; print i t
PSW

; final count times b

DEFGET: SU1
DCR
RAL
PUSH
MOV
MVI
LXI
DAD
MOV
INX
MOV
CALL
POP
RAL
RAL
MOV
MVI
RET

FIELD: STC
CMC
MOV
MOV
MVI
RAR
INR
JNC
DCR
RAL

; iobyte field

; lookup table of string addresses

names; clear the carry flag
C,A ; save iobyte
A,B ; get mask
E,0 ; clear counter for rotates

; rotate until carry i s s e t ,

F1ELD1
E ; then back up one rotate

PUP2:

FIELD1 : CNAMES: DW
RNAMES: DW
PNAMES: DW
LNAMES: DW

CTTY, CCRT, CBAT, CUC1
RTTY, RPTR, RUR1,RUR2
PTTY, PPTP, PUP 1,PUP2
LTTY, LCRT, LLPT, LUL1

LOGDEV: DW CONS
DW READ
DW PUN
DW LST

CONS: DB 'CONSOLES '
READ: DB 'READERS
PUN: DB 'PUNCHS
LST: DB LISTS

; LIST field names

PH

e-i
F-t

v-
H

K

E

J

'
C

M
'

C
M

'
C

M
'

C
M

LTTY:

LCRT:

LLPT:

LUL1:

; field mask now aligned on b i t s 0 & 1 , and E = count of rotates

MOV B,A ; put mask back
MOV A,C ; recover original field mask
DCR E
INR
JZ

E ; check for already zero
FIELD3

FIELD2: RAR
DCR E ; rotate to count in E
JNZ FIELD2

FIELD3: ANA B ; now isolate b i t s
ADD A ; double i t
MOV E,A
MVI D,0
DAD D ; finally find index
MOV E,M ; get the real address
INX H
MOV D,M
RET

; command table and addresses

'WHERE ,0
WHERE
'WHAT ,0
WHAT
'SET, 0
SETIBYTE
'DEFINE ,0
DEFINE
OFFH

; name strings here .
; since user may assign new names, allou
; up to 24 chars per name.
; CONSOLE field names

CTTY:

CCRT:

CBAT:

CUC1:

; fi le control blocks

O, 'SET1O COM'
0 ,0 , 0 ,0 , 0 ,0 , 0 ,0 , 0 ,0 , 0 ,0
0 , 'SETIO $$$ '
0 ,0 , 0 ,0 , 0 ,0 , 0 ,0 , 0 ,0 , 0 ,0
o 'Srfid H 'oooo
0 , 'SETIO COM', 0 , 0 , 0 ,0g

g
g
g
f
SOLDFCB:

OFCBX:
PFCB:
PFCBX:
RENFCB:

; initialize routine. Print opening remarks and clear
; and /or set various counters & flags.

IN IT: LDA CBUF ; i f command on command l i i je , user knows
ORA
JNZ

A ;
IN1T1 ;

what he i s doing, so don t
print things he already knows.

LXI D, OPNMSG
INITO: CALL PSTRING ; print t i t l e s , e t c .

XRA- A
INIT1: STA CFLAG ; set flag for command line input.

XRA A
STA ALTFLAG
CALL CRLF
LXI H, OFCBX
MVI B,24 ; f i l l FCBs with zeros

INIT2: MVI M,0
INX H
DCR B
JNZ INIT2

; READER field names

RTTY:

RPTR:

RUR1:

RUR2:

; flags and address storage

CFLAG: DB 0
IOBYTE: DB 0
ALTFLAG:DB 0
LDEVNUM:DB 0

; buffer(s)

1BUF: DB bOH
DS BOH

END■
57

; PUNCH field names

PITY: DB 'TTY:$ '
DS 20

PPTP: DB 'PTP :$ '

Lifelines /The Software Magazine, Volume III, Number 6

BUDGET FOR 1977
OTHER EXPENSES

TRAVEL

-SALARIES

XYZ INDUSTRIESMONTHLY SALES

U
N

IT
S

SO
LD

NY NJ CT MA PA Rl

PLANT

Productivity Level Profit Level Absentee Level

OFFICE » 1 ------- OFFICE »2 _ _ OFFICE #3 ------- OFFICE #4

Be your own chartmaker.
All it takes is

GrafTalk and a little
plain English.

We think GrafTalk is one of the most ingeni-
ous programs to come along since the birth of the
microcomputer.

It turns out graphic designs, and text, so easi-
ly you can do it on your first try. And you don’t
have to be a computer expert.

Pie charts, bar charts, symbol and mixed
charts, all accomplished on your desktop compu-
ter through a few simple instructions in plain Eng-
lish, all printed out on your printer.

No more handing over your figures to others.
Then waiting around to see how the charts come
out.Then waiting again . For revisions. And no more
design expenses.

Further, in a bigger sense, GrafTalk helps you
know your business better. For it lets you visual-
ly plot everything that’s happening— share of mar-
ket, quality control, sales trends, name it and you
have it.

Not just when you have the time or budget.
But anytime. GrafTalk puts it all at your fingertips.
In color. Or in black and white. Depending on your
equipment.

We sell and distribute GrafTalk worldwide,

along with more than 200 other programs, all
usable with most microcomputers on the market.
We are, by a wide margin, the world’s biggest sin-
gle source of micro and minicomputer software—
with offices in the U.K., Switzerland, West Ger-
many, Sweden, France and Japan. And a nation-
wide Technical Hot Line that you can depend on.

Just give us a call at (212) 860-0300. Or fill
out the coupon.

r feboat Associates
I 1651 Third Avenue
■ New York, New York 10028
■ TWX: 710-581-2524 (LBSOFT NYK)
I TELEX: 640693 (LBSOFT NYK)

I □ Send me information on GrafTalk.
I Send me The Complete Lifeboat Catalog.

TitleName

Company

Street

State ZipCity

Phone

Lifeboat Associates
World’s foremost software source.

Copyright © 1982 by Lifeboat Associates
GrafTalk,™ Redding Group, Inc. me.

BOY IS THIS
COSTING YOU.

records and entire databases
with a few keystrokes, with
accuracy to 10 places.

Change your data or your
entire database structure
without re-entering all
your data.

And after you're finished,
you can protect all that
elegant code with our run-
time compiler.

Expand your clientbase
with dBASE II.

It's really quite basic: time is
money.

And BASIC takes a lot more
time and costs a lot more
money than it should every
time you write a new business
software package.

Especially when you
could speed things up with
dBASE II.

dBASE II is a complete
applications
development package.

Users tell us they've cut the amount of code they
write by up to 80% with dBASE II.

Because dBASE II is the high performance relational
database management system for micros.

Database and file handling operations are done
automatically, so you don't get involved with sets, lists,
pointers, or even opening and closing of files.

Instead, you write your code in concepts.
And solve your customers' problems faster and for

a lot less than with BASIC (or FORTRAN, COBOL
or PL/I).

dBASE II uses English-like commands.
dBASE II uses a structured language to put you in

full control of your data handling operations.
It has screen handling facilities for setting up input

and output forms.
It has a built-in query facility, including multi-

key and sub-field searches, so you can DISPLAY
some or all of the data for any conditions you want
to apply.

You can UPDATE, MODIFY and REPLACE entire
databases or individual characters.

CREATE new databases in minutes, or JOIN data-
bases that already exist.

APPEND new data almost instantly, whether the
file has 10 records or tens of thousands.

SORT the data on as many keys as you want. Or
INDEX it instead, then FIND whatever you're looking
for in seconds, even using floppies.

Organize months worth of data in minutes with the
built-in REPORT. Or control every row and column
on your CRT and your printer, to format input and
output exactly the way you want it.

You can do automatic calculations on fields,

With dBASE II, you'll write programs a lot
faster and a lot more efficiently. You'll be able to
write more programs for more clients. Even take
on the smaller jobs that were out of the economic
question before. Those nice little foot-in-the-data-
base assignments that grow into bigger and better
bottom lines.

Your competitors know of this offer.
The price of dBASE II is $700 but you can try it

free for 30 days.
Call for our Dealer Plan and OEM run-time package

prices, then take us up on our money-back guarantee.
Send us your check and we'll send you a copy of
dBASE II that you can exercise on your CP/M®
system any way you want for 30 days.

Then send dBASE II back and we'll return all of your
money, no questions asked.

During that 30 days, you ca:
much dBASE II can save you,
and how much more it lets
you do.

But it's only fair to warn
you: business programmers
don’t go back to BASIC’s.

Ashton-Tate, 9929 Jefferson,
Los Angeles, CA 90230.
(213) 204-5570.

find out exactly how

Ashton-late
©Ashton-Tate 1981

®CP/M is a registered trademark of Digital Research.Also available from Lifeboat Associates.

LIFELINESVThe Softw
are M

agazine™
1651 Third Avenue, N

ew
 York, N

ew
 York 10028

A
t N

ew
 York, N

.Y.

